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postulate about the localized description. Professor 
Musher called our attention to the connection between 
our closed shell discussion and the crystal field theory. 

I. Introduction 

The theoretical study of all but the simplest liquids 
has been and remains extremely difficult. The com­
plexity of the intermolecular interactions has as yet 
in most cases precluded the development of realistic 
and tractable model intermolecular potential func­
tions. Also, the existence of five or more degrees of 
freedom per molecule has made extensive numerical 
calculations nearly impossible. Water, because it is 
the simplest of the "nonsimple" liquids, and because 
of its importance, may be considered to be a test case 
for such studies. 

Until recently theoretical structural and statistical 
mechanical studies of water have been limited to de­
scriptions in terms of rather simply conceived structural 
entities whose interrelations and properties could be 
easily dealt with. All of the treatments of this school 
suffer from severe structural underdefinition, or ex­
cessive reliance on adjustable parameters, or both. 
Some of them have the additional quality of grossly 
disagreeing with available experimental data. 

One group of simple models postulates the existence 
of microphases within the liquid. Usually the various 
microphases are supposed to have markedly different 
densities. Those models which require the existence 
of such regions of different densities are invalidated by 
the results of X-ray scattering studies by Narten, et a/.,2" 
discussed by Narten and Levy,2b which deny the exis­
tence of density variations larger than those arising 
from thermal fluctuations. The most advanced models 
of this type are those proposed by Nemethy and Scher­
aga,3 Vandand Senior,4 and Jhon, etal.s-e 

(1) Fannie and John Hertz Foundation Fellow. 
(2) (a) A. H. Narten, M. D. Danford, and H. A. Levy, Discuss. 

Faraday Soc, 43, 97 (1967); (b) A. H. Narten and H. A. Levy, Science, 
165, 447 (1969). 

(3) G. Nemethy and H. A. Scheraga, / . Chem. Phys., 36, 3382 (1962); 
41, 680 (1964). 

(4) V. Vand and W. A. Senior, ibid., 43, 1878 (1965). 

Professors Charles A. Coulson, Benjamin M. Gimarc, 
and H. Bradford Thompson also have furnished helpful 
suggestions. 

Another popular model of the structure of water is 
that of an ice-like hydrogen-bonded structure with 
non-hydrogen-bonded "interstitial" molecules in the 
lattice cavities. A typical example is the model pro­
posed by Marchi and Eyring7 and subsequently re­
tracted by Eyring,6 who cited Stevenson's8 interpreta­
tion of the ultraviolet spectrum of water as strong 
evidence for the nonexistence of significant concentra­
tions of non-hydrogen-bonded molecules at any tem­
perature in the normal liquid range. The models pro­
posed by Nemethy and Scheraga3 and Vand and Senior4 

also fail on this score. 
A "simple" model which we feel deserves more 

thorough discussion has been proposed by Angell.9 

He interprets the properties of water in terms of the 
concentrations of broken and unbroken hydrogen 
bonds without reference to other molecular properties. 
This scheme can be used to generate the classical two 
state thermodynamics often used to describe the prop­
erties of water. Since it is not at all necessary to 
associate the existence of microphases or non-hydrogen-
bonded molecules with broken hydrogen bonds, this 
model does not conflict with the available spectroscopic 
data. Although it suffers from structural underdefini­
tion, we find it rather elegant and note that it generates 
some impressive results. We consider Angell's model 
to be the best and least restrictive of the "simple" 
category. It may turn out to be a useful simplification 
for the classification of the molecular states derived 
from a more complete statistical mechanical model, 
but that is not now known. We do have one objec­
tion to Angell's model, however, in that it assumes that 

(5) M. S. Jhon, J. Grosh, T. Ree, and H. Eyring, ibid., 44, 1456 
(1966). 

(6) M. S. Jhon, E. R. Van Artsdalen, J. Grosh, and H. Eyring, ibid., 
47, 2231 (1967). 

(7 R. P. Marchi and H. Eyring, J. Phys. Chem., 68, 221 (1964). 
(8) D. P. Stevenson, ibid., 69, 2145 (1965). 
(9) C. A. Angell, ibid., 75, 3698 (1971). 
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the chemical potential of a hydrogen bond is tempera­
ture dependent only through the configurational 
entropy. This ignores the thermodynamic effects of 
the variation of intermolecular vibrational amplitudes 
with temperature. 

The only "nonsimple" model (other than our own) 
is the one recently presented by Bell.10 (Bell's paper 
appeared in print as we were making the final revisions, 
following the referee's comments, on this manuscript.) 
Bell's model is rather similar to our own though much 
simpler. It basically consists of a lattice gas on a body 
centered cubic lattice as does our model. Because 
of its similarity to our model we have chosen to discuss 
it in considerable detail. The length of this discussion 
has forced us to relegate it to an Appendix.10a 

We feel that the most important single recent advance 
in the theoretical study of water has been the develop­
ment of a new effective pairwise-additive-intermolecular 
potential energy function by Ben-Nairn and Stillinger.11 

The form of this model potential is based on the as­
sumption that the intermolecular potential may be 
divided into short range repulsive and electrostatic 
components. The short range (or dispersion) com­
ponent is taken to be the Lennard-Jones potential 
suitable for the neon atom, which contains the same 
number of electrons as the water molecule, centered on 
the oxygen nucleus. The spherical symmetry of this 
component probably is not a b a d approximation be­
cause the bond length of 0.96 A is considerably smaller 
than the collision radius of neon, 1.41 A. The elec­
trostatic component is represented by a regular tetra­
hedron of charges of ±0.19 electron, 1 A away from 
the oxygen nucleus and centered on it. Coulomb di­
vergences are eliminated by multiplying the electro­
static term by a "switching function" which contin­
uously reduces and finally eliminates the electrostatic 
term at oxygen-oxygen separations smaller than a 
certain value. The introduction of this "switching 
function" may, at first glance, seem unphysical, but 
actually is not, since it merely represents the short 
range repulsive effects of the very high electron densities 
in the immediate vicinities of the protons. The param­
eters of the electrostatic term are fitted to the second 
virial coefficient of water vapor and the experimentally 
determined first neighbor separation in ice. 

Rahman and Stillinger1'2 have carried out molecular 
dynamics calculations using the Ben-Nairn-Stillinger 
potential (henceforth referred to as "the BNS poten­
tial") and obtained tolerably good results for the radial 
distribution function and certain other properties. 
They found that their results for the potential energy 
and self-diffusion coefficient could be improved con­
siderably by simply increasing the strength of the po­
tential by 6%. Ben-Nairn has reported an attempt to 
solve the Percus-Yevick equation for water using the 
BNS potential.13 It was only partially successful 

(10) G. M. Bell, Proc. Phys. Soc. London (Solid State Phys.), S, 889 
(1972). 

(10a) NOTE ADDED TN PROOF: After completion of this paper we 
were informed of the work of M. Weissmann and L. Blum, Trans. 
Faraday Soc, 64, 2605 (1968), which we had accidentally missed. 
The cell model employed in that paper differs considerably from the 
one we use. 

(11) A. Ben-Naim and F. H. Stillinger, Jr., in "Water and Aqueous 
Solutions, Structure, Thermodynamics, and Transport Processes," R. A. 
Home, Ed., Wiley, New York, N. Y., 1972. 

(12) A. Rahman and F. H. Stillinger, Jr., / . Chem. Phys., SS, 3336 
(1971); F. H. Stillinger, Jr., and A.Rahman, submitted for publication. 

because of the strength of the intermolecular interac­
tions involved. 

Although the molecular dynamics and integral equa­
tion approaches might at first glance appear to offer 
possibilities for obtaining enticingly general descrip­
tions of water, in reality they both have some major 
shortcomings. An as yet apparently insurmountable 
one is that both are incapable of dealing with quantum 
effects, which cannot be neglected due to the large 
spacing of the librational levels in water. The molec­
ular dynamics technique does not, at present, lead to a 
direct evaluation of the entropy. Both approaches are 
just barely practical from the computational volume 
point of view; attempts to improve the results coming 
from them or to widen their scope could push them over 
the edge. We certainly feel that this would be the case 
if one were to attempt to treat aqueous solutions using 
the Percus-Yevick equation. 

Before proceeding to a detailed description of our 
model in the next section, we wish to review the general 
considerations which led us to it. For the time being, 
we will restrict our attention to purely classical sta­
tistical mechanics. 

Ideally, any problem in equilibrium classical statistical 
mechanics for which the appropriate intermolecular 
potential functions are known could be solved by ex­
actly evaluating the partition function for the whole 
system. Since this is not a practical proposition, we 
seek a reasonable approximation to the partition func­
tion. In a dense substance such as liquid water, most 
of the phase space may immediately be dropped from 
consideration because it corresponds to very high energy 
repulsive configurations. In the case of water a similar 
consideration arises from the strength and strong 
angular dependence of the electrostatic interactions. 
If the intermolecular forces are strong enough and the 
system dense enough, the major contributions to the 
partition function may be expected to arise from a 
number of regions of phase space corresponding to 
maximally stable configurations with fairly "narrow" 
interconnections between them, as is the case in crystals. 
These phase space regions may be identified with cer­
tain "microstructures" in which the system is at a rela­
tively low potential energy. 

Indications for such a state of affairs include solid­
like spectral properties, as is the case in water, and a 
sizable disparity between the periods of intermolecular 
vibration and the time required for molecular reorienta­
tion and translations. Eisenberg and Kauzmann 
estimate this ratio to be in the order of 50 in water on 
the basis of diffusion and dielectric relaxation data.14 

Further confirmation for the "amorphous solid" view 
is given by the molecular dynamics results of Rahman 
and Stillinger12 who Fourier transformed various cal­
culated momentum autocorrelation functions and found 
them to consist predominantly of high-frequency com­
ponents. Also, the slow decay of their calculated dipole 
moment autocorrelation function argues for the ab­
sence of rapid molecular reorientations. 

Once it has been ascertained that a "microstructure" 
description is appropriate and the main features of 

(13) A. Ben-Naim, J. Chem. Phys., 52, 5531 (1970). 
(14) D. Eisenberg and W. Kauzmann, "The Structure and Properties 

of Water," Oxford University Press, London, 1969, pp 152-153. The 
present authors strongly recommend this book as the most comprehen­
sive review on the subject of water to date. 
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the microstructure have been identified, the problem 
quite naturally separates into configurational and vibra­
tional components. In the case of water, this separa­
tion makes it possible to use the much simpler tech­
niques appropriate for an amorphous solid. In the 
present work we begin by identifying the major local 
structural features and developing a description of the 
liquid in terms of them. The latter task includes deriv­
ing appropriate expressions for the configurational 
energy and entropy. Next we evaluate the strictly 
local properties by means of lattice dynamics and the 
cell theory of fluids. Then we find expressions for 
the various quantities which we wish to calculate in 
terms of the concentrations of the various local struc­
tures. Finally, we find the equilibrium concentrations 
of the local structures by minimizing the expression 
for the free energy in terms of them. 

Of course, the exact form and degree of definition 
of the local structures chosen must be such that the 
course of calculation outlined above is tractable. An 
idealized assumed form for the local structures does 
not, however, inevitably lead to large errors in the cal­
culated properties. If we accept the hydrogen bond as 
being a well-defined structural entity, it is possible to 
speak of the topology of the microstructure of water 
which is determined by the hydrogen-bonding and hard 
sphere-like packing properties of the molecules. As 
long as the topological characteristics of the "micro-
structure" are preserved in the idealized local structures, 
the calculated configurational entropy, which is prob­
ably the most structure-sensitive property of a substance, 
will not be greatly worsened by the idealization. 

There is some dispute as to whether hydrogen bonds 
in liquid water may actually be considered to be dis­
crete structural entities. The strongest evidence we 
know of against the discrete hydrogen bond view is 
the observation made by Rahman and Stillinger that 
the various typical molecular configurations which 
their molecular dynamics calculation generated do not 
appear to possess discrete hydrogen bonding.12 We 
wish to point out, however, that the hydrogen bond con­
cept that is used in our work includes the role of vibra­
tional motion. We define it by stating: A hydrogen 
bond between a hydrogen atom of one molecule and a 
free electron pair (or negative point charge if the BNS 
potential is employed) of another molecule exists (or 
has existed) when the two have been in proximity for 
several periods of intermolecular vibration and the 
local minimum of their potential energy of interaction 
has been bracketed in all three relevant relative co­
ordinates. This definition is restrictive enough to 
ensure the separability of the configurational and vibra­
tional effects which our treatment is based on. The 
presence of such entities cannot be detected from the 
purely static pictures of molecular configurations upon 
which Rahman and Stillinger base their conclusion. 
We also wish to point out that their molecular dynamics 
results predict about one too many nearest neighbors, 
which probably tends to hide the presence of any dis­
crete hydrogen bonds. Furthermore, the as yet in­
completely known form of the potential function and 
the disregard of quantum effects in their calculation 
may well be sufficiently large to misrepresent the local 
structure to this degree. 

In our work we use the BNS potential increased by 

6% as suggested by Rahman and Stillinger.12 (No 
further mention will be made of this modification.) 
The major difficulties we encountered were connected 
with the genesis of the BNS potential as an effective 
potential for classical calculations and the fact that the 
"BNS hydrogen bond's" curvature in the librational 
degrees of freedom leads to serious disagreement with 
spectroscopic data. When these deficiencies are properly 
accounted for, however, our model leads to some 
gratifyingly good results. The three major thermody­
namic functions are in error by about 10% in the direc­
tion of predicted lower stability and the heat capacity 
is too low by about 25%. These errors are for the 
most part consistent with the known defects of the 
cell theory. Insofar as it has been possible to deter­
mine, our model does not conflict with the experi­
mentally observed radial distribution function. The 
calculated values of the density are in excellent agree­
ment with experiment, yielding a maximum error of 
only 1.4%. We have also generated an approximation 
to the translational frequency spectrum and obtained 
excellent agreement with the experimentally observed 
positions of the two major peaks in this region. Our 
calculations indicate that the number of hydrogen 
bonds per molecule is about 1.35 throughout the 
normal liquid range and that, surprisingly, there is 
probably very little structural change with temperature 
other than simple solid-like thermal expansion. We 
have also carried through all of the calculations without 
correcting the curvature error for comparison. 

We present a general description of our model in 
section II and go into greater detail in sections III—VIII. 
In section IX we describe our method of approximating 
the translational frequency spectrum. Section X deals 
with the sources of some of the experimental data with 
which we compare our results. Section XI contains 
a detailed presentation and analysis of our results and 
in section XII we discuss some possibilities for future 
investigation. 

Appendix I contains the detailed discussion of Bell's 
model alluded to previously. It should be read after 
section II. Appendix II contains a general discussion 
of lattice statistical methods which we decided to in­
clude for the benefit of those of our readers who are 
not chemical or solid state physicists. In it we attempt 
to describe a paradigm for use in treating problems 
of the configurational entropy sort. It should be read 
before section III. We discuss computational details 
in Appendix III. 

Before proceeding further, the reader is forewarned 
that sections VIII through X, a large part of section V, 
and Appendix III deal largely with technical consider­
ations and thus are peripheral to undertanding the 
major content and results of our work. 

Throughout this paper we take the liberty of ne­
glecting the distinctions between internal energy and 
enthalpy when dealing with condensed phases. 

II. A General Description of the Model 

We contend that much of the information contained 
in a full binary distribution function is redundant be­
cause most of the structure evident beyond the first 
minimum is probably due to indirect correlations. 
Since indirect correlations are ultimately composed of 
direct correlations, it stands to reason that the whole 
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(a) (b) 

(C) 

Figure 1. Geometric characteristics of the present model: (a) 
space lattice section employed; (b) first molecular framework; (c) 
second molecular framework. Heavy lines indicate hydrogen 
bonds. 

radial distribution function may be expressed in terms 
of the direct correlation portion, i.e., the first maximum 
region. 

In determining the most likely arrangements of 
molecules within this region, we focus our attention 
upon the short range repulsive forces, the hydrogen-
bonding geometry, the high density of liquid water, 
and its highly negative internal energy. 

The heat of fusion of ice is only about one-eighth 
of the internal energy change accompanying sublima­
tion. This indicates that many of the hydrogen bonds 
must remain intact in water at the melting point and 
that the potential energy increase associated with those 
that are broken is probably partially compensated for 
by strong electrostatic interactions between non-hy­
drogen-bonded near neighbors. This, coupled with 
the liquid-solid density difference, indicates that the 
structure of water has a large degree of hydrogen bond­
ing along with many near non-hydrogen-bonded neigh­
bor pairs. We feel that the most plausible structure 
reflecting all of these properties is one containing inter­
penetrating partially hydrogen-bonded networks which 
are locally independent in respect to hydrogen bonding. 
We include the assumption of local independence be­
cause this property most probably stabilizes the struc­
ture both energetically and entropically. The energetic 
stabilization comes about because local independence 
allows configurations with less distortion from ideal 
hydrogen-bonding angles than otherwise. The en-
tropic stabilization is due to the possibility of more 
efficient packing and, hence, more possible configura­
tions at a given density. 

Some preliminary calculations led us to the con­
clusion that the most likely structure answering to the 
above description is a partially occupied ice VIII lat­
tice15 which consists of two interpenetrating diamond-

CIS) B. Kamb and B. L. Davis, Proc. Nat. Acad. Sci. U. S., 52, 1433 
(1964). 

like lattices.16 The distribution of molecules in the 
fully occupied ice VIII lattice is of the body-centered 
cubic type. 

The fundamental lattice section (henceforth referred 
to as the "basic cell") which we chose to employ is a 
regular octahedron in the body-centered cubic ice VIII 
lattice which contains a central site and its fourteen 
nearest and next-nearest neighbor sites. In full ice 
VIII occupancy it contains a central molecule and its 
four hydrogen-bonded nearest neighbors from one 
diamond-like sublattice and ten molecules from the 
other sublattice, four of which are first neighbors and 
six second neighbors of the central molecule (see Figure 
1). We vary the dimensions of the basic cell linearly 
with temperature so that the nearest-neighbor distance 
changes from 2.82 A at melting to 2.88 A at boiling as 
indicated by the results of Narten, et al.2 Such a 
semiempirical ansatz about the intermolecular distances 
seems necessary because our treatment is essentially 
of the quasiharmonic variety. It is, therefore, unsuit­
able for studying this type of thermal expansion which 
is a result of anharmonicity in the intermolecular 
potential. We feel that this choice for the fundamental 
region size is satisfactory because it includes all of the 
central molecule's neighbors within 4 A, which is all 
that we believe necessary, and yet the number of con­
figurations possible is small enough that the model is 
numerically tractable. 

The local structures which our model deals with 
are the various possible distributions of the noncentral 
molecules over the sites of such basic cells, one of which 
is considered to be centered on each molecule in the 
liquid. (Henceforth we refer to these distributions as 
"basic cell configurations.") As a matter of conve­
nience, we have restricted the range of basic cell con­
figurations which we deal with to those which have two, 
three, or four hydrogen-bonded neighbors. The exis­
tence of non-hydrogen-bonded molecules is, of course, 
precluded by Stevenson's spectroscopic data cited 
earlier.8 Stevenson also presents a convincing spectro­
scopic argument that there cannot be a significant 
concentration of singly hydrogen-bonded molecules 
which are hydrogen bonded through the oxygen. We 
contend that this proscription can be extended to singly 
hydrogen-bonded molecules which are bonded through 
a proton since there are no grounds for supposing 
that the latter species is thermodynamically any more 
stable than the former. It is quite possible that our 
restrictions upon the numbers of first and second neigh­
bors are unrealistic. It will, however, later become 
apparent that the exact arrangement of non-hydrogen-
bonded neighbor pairs does not directly enter into the 
calculation of any of the thermodynamic quantities. 
The only significant properties of such pairs are their 
total concentrations, which can surely be approximated 
by a moderately restricted assortment of basic cell 
configurations such as that employed in this work. 
We computer-generated all possible basic cell configura­
tions satisfying these constraints and found that there 
are 374. The basic variables of our model are the 
concentrations (or "probabilities") of each of them. 

In defining our basic cell configurations, we have not 

(16) We also experimented with structures resembling the two close 
packed lattice types but found that their agreement with both structural 
and thermodynamic data was much worse. 
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distinguished between the hydrogen atoms and the 
free electron pairs on the molecules in them. To have 
done so would have led to an intractably large number 
of basic cell configurations. The effects of the pos­
sibility that various sets of molecular orientations are 
consistent with a given basic cell configuration are dealt 
with separately. 

We feel that a major shortcoming of our model is 
that the results it generates are difficult to compare 
with the experimentally determined radial distribution 
function.2a For example, the second major peak which 
appears in the experimental radial distribution function 
is almost certainly due to hydrogen bonded second 
neighbors and, therefore, cannot be accurately studied 
on the basis of our model because of the small basic 
cell size employed. Also, the intermolecular distances 
in our basic cell configurations are precisely defined 
while the distances between the various types of neigh­
bors in the real substance vary over a certain range. 
The degree of variation strongly influences the appear­
ance of a given neighbor pair type's contribution to 
the radial distribution function. If the spread is small, 
reflecting strong intermolecular correlations, the con­
tribution is a high, narrow peak. If it is large, re­
flecting weaker correlations, the contribution is a broad 
low peak, or possibly even a flat region. Since our 
idealized cell structure takes no account of such varia­
tion we can only make a crude comparison and come 
to conclusions the contents of which are no stronger 
than "does not disagree." 

We will now attempt such a rough analysis and tenta­
tively identify our first and second neighbor pairs 
with the main components of the short range portion 
of the experimental radial distribution function. The 
main feature in this region is the large first maximum. 
This we associate with the first neighbors, both hydro­
gen bonded and nonhydrogen bonded. The sharpness 
of this peak is to be expected because the short range 
forces, both electrostatic and dispersion, are very strong. 
(A quick glance at the radial distribution of liquid argon 
will quickly convince the reader that dispersion forces 
alone are quite strong enough to produce a sharp 
first maximum.) 

Since these forces decrease rapidly with distance, it 
is reasonable to expect the non-hydrogen-bonded second 
neighbor contribution to be of the diffuse variety. Us­
ing this assumption, we identify the minimum and the 
minor peak between the first and second major peaks as 
the second neighbor contribution. In making this 
seemingly illogical identification of a minimum with 
a specific contribution, we use the observation that the 
bottom of this minimum is actually at about the bulk 
density. Therefore, we feel that it is valid if it is as­
sumed that the correlations reflected by this region 
are weak. (There is some dispute as to whether the 
minor peak is real rather than merely a numerical 
artifact. The latter conclusion would not, however, 
invalidate our argument which is based only upon the 
average density in the region between the two major 
peaks.) 

There are two other possible objections to this last 
identification which must be answered. First, the 
minor peak referred to is at about 3.6 A rather than at 
about 3.3 A as is to be expected from our assumed basic 
cell structure. To this we reply that the disagreement 

is only about 10%, certainly not overriding! y signifi­
cant at the level of approximation used throughout 
this work, especially if the possibility of an assymmetric 
distribution of second neighbor distances is granted. 
Second, the second hydrogen bonded neighbor max­
imum is rather pronounced even though it lies at an 
even greater distance. This, however, poses no con­
tradiction since second hydrogen-bonded neighbors 
correlate through strong hydrogen-bonding interactions, 
even if indirectly. 

An objection to structures of the type employed in 
this work which is related to the above discussion has 
been raised by Rahman and Stillinger on the basis of 
their molecular dynamics results.12 They present a 
decomposition of their calculated radial distribution 
function in solid angles in the coordinate system of the 
reference molecule. Their results indicate a fairly 
low density of neighbors in the regions in which our 
structure's non-hydrogen-bonded nearest neighbors 
should lie. This objection is, we believe, invalid because 
their purely angular decomposition of space around 
the reference molecule is rather different from our 
decomposition into three dimensional neighbor posi­
tions (or volumes). 

Our expression for the configurational entropy is 
based upon that for a lattice gas of molecules and hy­
drogen bonds (between nearest neighbor pairs of mole­
cules) in a body-centered cubic lattice. The correla­
tions of molecules and hydrogen bonds are dealt with 
by constraining their distribution to be consistent with 
the tetrahedral hydrogen bonding geometry and our 
previously introduced constraint that each molecule be 
hydrogen bonded to at least two others. This is dis­
cussed in section III. 

There is also a "structural" entropy component which 
corresponds to the residual entropy of ice. We cal­
culate this contribution using a simple extension of 
Pauling's calculation for ice." (Henceforth we refer 
to this term as the "orientational entropy.") This 
is discussed in greater detail in section IV. 

The above terms relate to the statistics of "linking 
up" the molecules to form a microstructure as discussed 
above. The remaining terms generate the thermody­
namic properties of any such given microstructure. 

The major remaining term is the "cell model term." 
The cells dealt with here are, of course, just our basic 
cells with the various arrangements of molecules in 
them. In order to reduce the volume of calculations 
to tractability, we treat the relatively small effects of 
non-hydrogen-bonded neighbors as perturbations using 
the appropriate classical expressions. We deal with 
effects of hydrogen-bonded neighbors directly by using 
the quantum mechanical harmonic oscillator expres­
sions and frequencies calculated by means of the quasi-
harmonic approximation. The translational and libra-
tional motions are dealt with separately. This for­
malism is necessary in order to be able to deal with 
quantum effects and to allow an insufficiency of the 
BNS potential which we discovered to be corrected. 
The effects of molecules not within a given molecule's 
basic cell are calculated using a dielectric continuum 
approximation. We account for the effects of tempera­
ture dependent variations of the intramolecular zero-

(17) Reference 14, pp 74-76. 
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point energies semiempirically. These matters are 
discussed in section V. 

An apparent contradiction arises from including the 
distribution of non-hydrogen-bonded neighbors in 
the definition of the basic cell configurations but nearly 
ignoring them in the treatment of the configurational 
entropy. We include them explicitly in order to be 
able to treat their fairly important energetic effects 
more accurately by forcing their distribution in each 
cell to be consistent with our assumed structure. The 
same purpose is served by the various self-consistency 
constraints discussed in sections III and VII and Ap­
pendix II. 

The basic defect of the cell model is its inability to 
deal with the effects of the correlation of motions of 
neighboring molecules. We initially attempted to treat 
these effects by the method with which we generated 
our approximation to the translational frequency spec­
trum. It turned out, however, that this approach was 
insufficiently accurate and too unwieldy to bother with 
in light of the fairly small magnitude of these effects 
indicated by our preliminary results. Therefore, we 
decided to use a simple approximation technique, 
which is described in section VI, to deal with them. A 
general discussion of correlation (or "communal") 
effects is included in sections VI and XI. 

With the exception of the dielectric continuum and 
intramolecular zero-point energy contributions to 
the cell term, all of these quantities are functions of 
the basic cell probabilities. We find the equilibrium 
basic cell probabilities at each temperature by express­
ing the free energy in terms of the basic cell probabili­
ties and minimizing it by the method of steepest descent. 
The minimization is performed under suitable con­
straints which ensure that the resulting calculated struc­
ture is self-consistent and obeys our various initial 
assumptions. This is discussed in section VII and 
Appendix III. 

The heat capacity is determined by differentiating the 
calculated values of the enthalpy as discussed in section 
VIII, where we also describe our approximation to the 
Kirkwood correlation factor.1S 

We have not attempted to describe phase transitions 
using our model. We have, however, evaluated the 
thermodynamic properties of ice at the melting point, 
using techniques which are closely related to our treat­
ment of water, in order to test our model by calculating 
the thermodynamic properties of this simpler related 
system. We have combined these results with our 
water results to evaluate the thermodynamic changes 
associated with melting. This is discussed in sections 
V and XI. 

III. Configurational Entropy 

Since no plausible general treatment of the configura­
tional entropy of the noncrystalline substances problem 
has yet been proposed, we were forced to attempt to 
extend the lattice statistical methods discussed in Ap­
pendix II. The variant most suitable for our purposes 
is the theory of the dense lattice gas. We readily con­
cede that the lattice gas approach has not been very 
good at all in dealing with the properties of simple 
liquids and gases. However, we are quite convinced 
that it is much more suitable in the case of water than 

(18) J. G. Kirkwood, / . Chem. Phys,, 7, 911 (1939). 

in the case of simpler substances. The reason that the 
lattice gas approach fails in treating, say, liquid argon, 
is that it is based on the assumption that the system's 
phase may realistically be divided into distinct micro-
structures in the sense of the discussion in section I. 
These postulated microstructures are, of course, the 
various allowed configurations of the lattice gas. In 
that discussion, however, we concluded that just such 
a decomposition of phase space is a very reasonable 
assumption in the case of liquid water. We also con­
cluded that, thermodynamically speaking, local struc­
ture is all. Therefore, we conclude that a lattice gas 
formalism is indeed appropriate. 

Our original inclination was to treat the configura­
tional entropy problem by means of the Ising model 
treatment developed by Hijmans and De Boer19 using 
our basic cell as the basic figure. However, the full 
number of configurations possible in a basic figure of 
15 sites, about 1000 in this case, made this technique 
too unwieldy. We believe that using the Hijmans-
De Boer technique to calculate the configurational 
entropy could conceivably be more accurate than our 
treatment. Also, the lack of a liquid-solid transition 
in Bell's results10 might be rectified by going over to a 
larger basic figure. As they stand, Bell's results indicate 
that a straight lattice statistical calculation of the con­
figurational entropy using a fairly small basic figure 
might be sufficient for studies not involving phase 
transitions. This view is substantiated by the work of 
Kruseman-Aretz,20 which indicates that calculations 
which employ fairly small basic figures (on the order 
of three or four sites) often generate results which are 
not significantly different from those obtained using 
larger basic figures. He also derives the Hijmans-De 
Boer technique and other related techniques (such as the 
Guggenheim-McGlashan21 technique employed by Bell) 
as first order approximations to a formally exact theory. 

The technique we use relies on the hypothesis of 
well-defined microstructure less than the various 
standard lattice statistical treatments. More specifi­
cally, all of the standard lattice statistical treatments 
of the lattice gas treat molecules and vacancies sym­
metrically; i.e., vacancies are treated as a second com­
ponent in a disordered alloy with a fixed size and unde-
formable shape. This implies that a vacancy in the 
structure causes correlations of molecules and other 
vacancies as strongly as does a molecule. This, of 
course, is unreasonable because a given volume of empty 
space is anything but undeformable. In our deriva­
tion, only the very first step employs a postulation of 
this symmetry. All other invocations of the micro-
structure hypothesis involve the structure surrounding 
molecules but not that surrounding vacancies. 

The first factor in our estimate of the number of 
configurations is that corresponding to a random dis­
tribution of molecules over a lattice 

(AVP)! 

m{N[(i/p)- i]}! 

where A" is the number of molecules. 

(19) J. Hijmans and J. De Boer, Physica (Utrecht), 21, 471, 485, 499 
(1955). 

(20) F. E. J. Kruseman-Aretz, Thesis, Universiteit van Amsterdam, 
1962. 

(21) E. A. Guggenheim and M. C. McGlashan, Proc. Roy. Soc, 
Ser. A, 206, 335(1951). 
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In a strictly construed lattice gas the quantity p is 
simply the fraction of sites which are occupied. Since 
we have chosen to interpret the lattice gas rather liber­
ally, we must find a somewhat different working defini­
tion. For the sake of simplicity, we have chosen to 
define it as Vuth of the average number of first and 
second neighbors. This seems to be the most reason­
able choice when dealing with a structure defined in 
terms of basic cells of the type which we employ. The 
possibility of minor error in this interpretation does 
not concern us, because our preliminary calculations 
indicate that alterations of the magnitude possible and 
reasonable here do no more than add a relatively small, 
constant term to the various calculated quantities. In 
calculating the macroscopic density, we identify p 
with the fraction of sites filled in a perfect lattice. Again, 
the possibility of minor error is not important because 
the expression for macroscopic density is not used in 
any other calculation. 

We do not assign any value to p because it is a func­
tion of the set of basic cell probabilities [P1], whose 
equilibrium values are determined by minimizing the 
free energy in terms of them at each temperature con­
sidered. The same applies to the other quantities 
which are introduced in this section. 

In the minimization of the free energy we introduce 
the constraint that the ratio of the number of first 
neighbor pairs to the number of second neighbor 
pairs be 4/3, the same as the ratio of the number of 
first neighbor sites to second neighbor sites in our 
basic cell. This requirement is consistent with our 
procedure of starting off with a random distribution of 
molecules and hydrogen bonds, and is explicitly intro­
duced to eliminate the possibility of obtaining an equi­
librium solution contradicting this initial assumption. 
(See Appendix II in regard to the initial random dis­
tribution.) The introduction of the factors which 
compensate for the initial over-counting does not in­
validate this requirement. 

From this point on we do not use the microstructure 
hypothesis except when dealing with the immediate 
surroundings of molecules. 

Using our assumption of body-centered cubic local 
structure and a direct corollary of the above discussion, 
we !immediately conclude that the number of pairs of 
molecules in the random spatial distribution of mole­
cules introduced above which may be hydrogen bonded, 
i.e., first neighbor pairs, is 4Np. Of course, not all 
first neighbor pairs are actually hydrogen bonded. 
Defining 

Ph = number of hydrogen bonds/N 

we may write the number of ways of distributing the 
NPh hydrogen bonds over the 47V" pairs which may be 
hydrogen bonded as 

(4/Vp)! 
(NPh)\[N(4P - Ph)]I 

The product of these two factors is the initial esti­
mate of the number of configurations which must now 
be modified to compensate for overcounting. The 
overcounting occurs because most of the initial random 
distributions contain molecules which have too few 
or too many hydrogen bonds or incorrect angles be­
tween the hydrogen bonds. 

For the time being, we specify the number of hydro­
gen bonds each molecule engages in and which of the 
nearest neighbor sites in its basic cell are occupied by 
the hydrogen bonded neighbors and derive the factor 
corresponding to the (Vie)^ in the Pauling calculation. 

Any given first neighbor position in any given basic 
cell has the probability Ph/4 of being occupied by a 
hydrogen-bonded neighbor in the above derived ran­
dom ensemble of hydrogen bonds and molecules. 
Therefore, the probability of any molecule having i 
hydrogen-bonded neighbors in / specific first neighbor 
positions in its basic cell in such an ensemble is given 
by (Ph/4)'. This factor occurs a total of 2/VPh times. 

Another restriction factor is necessary to disallow 
the occurrence of non-hydrogen-bonded neighbors 
in the hydrogen-bonded neighbor positions of each 
cell. (This restriction is necessary to ensure consis­
tency with our postulated structure.) The correspond­
ing factor for each hydrogen-bonded neighbor position 
not occupied by a hydrogen-bonded neighbor is 

(1 - p)l[\ - (Ph/4)] 

where the denominator arises because we are dealing 
only with those first neighbor positions which have 
already been determined not to contain hydrogen-
bonded neighbors. This factor occurs N(4 — 2Ph) 
times. 

Both of these considerations together introduce the 
factor 

(Ph\iKW 1 ~ P YY(4-2fh) 
\4/ \l-(Ph/4)J 

At first glance it would seem that this is insufficient 
because it contains no factors of the type [1 — (Ph/4)] 
to ensure that any given molecule is not hydrogen 
bonded in excess of the hydrogen-bonding arrange­
ment assumed for it. This, however, is not a valid 
objection, since the number of factors Ph/4 appearing 
in the above expressions is 2NPh, i.e., two per hydrogen 
bond. This means that the above factor specifies the 
position of each and every hydrogen bond by "fixing" 
both of its ends. Therefore, there are no excess hy­
drogen bonds left which may be incorrectly placed. 

All of the above factors together yield the number 
of configurations in the random ensemble in which 
each molecule has a specific number and arrangement 
of hydrogen bonded neighbors. Of course, there are 
many such sets of numbers and arrangements of neigh­
bors possible. It remains to derive an estimate of 
that number. 

We define P2, Pz, and P4 as the fractions of molecules 
with two, three, and four hydrogen-bonded neighbors, 
respectively. The number of ways of assigning the 
N molecules to these categories is simply 

M /(NP2) !(/VP3) 1(NP4)I 

A molecule with a specified number of hydrogen-
bonded neighbors may have them distributed over the 
nearest neighbor positions in its basic cell in one of 
several ways. The number of possible arrangements 
of two, three, or four hydrogen bonded neighbors is 
twelve, eight, or two, respectively. (The reader will 
readily convince himself of this if he draws a cube and 
marks off four alternate vertices to form a tetrahedron.) 
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The total contribution to the multiplicity of configura­
tions from this source is 

\2NFl 8'vp* 2NPi 

Both of these factors together are the equivalent of 
the factor 6N in the Pauling calculation. 

Multiplying and rearranging, we write the total 
number of configurations as in eq 1. 

(Njp)\ 

N\ N{- - 1 
(4vVp)! 

! (NPh)\[N(4P - Ph)]! 
X 

(NP2)I(NP1)I(NP4)] X 

12 Ph 
X 

Ph V i - p y<*-gfh> 
r - (Ph/4) (i) 

IV. Orientational Entropy 

Our expression for the number of orientational 
configurations available to an incompletely hydrogen-
bonded set of water molecules is merely an extension 
of the Pauling calculation for ice.17 The number of 
ways in which the JVPj, protons involved in hydrogen 
bonding may be placed on molecules, disregarding for 
the moment the requirement of two protons per mole­
cule, is 2NP^. The number of ways of distributing the 
unaccounted for N(I — Ph) protons and N(I — Ph) 
unbonded electron pairs over 2N(2 — Py1) positions is 

[2N(2 -PJ]]HlN(I - P h ) ] ! } 2 

Of the 16 possible occupancies of the four positions of 
an individual molecule with protons and free electron 
pairs, only six give the neutral molecule. Therefore, 
we introduce a restriction factor 6/i6 for each molecule 
and obtain 

g(0) = 2A'Ph 
2[N(2 - Ph)]! 6 W 
\[N(2 - Ph)]} 

S<°>/k = jv(in 6 - Ph In 2) 

For Ph = 0, i.e., the dilute lattice gas with specified 
potential local hydrogen bonding geometry 

S<°>/£ = N In 6 

which is the rigorously correct result. For Ph = 2, 
i.e., ice 

S«>yk = N In Vs 

which is just the Pauling result. 

V. Cell Model Contributions and the 
Insufficiencies of the BNS Potential 

In the straightforward cell model treatment the ex­
pressions for the free energy, internal energy, and en­
tropy are 

^ = tf£Pt(-jj In Qt ~ E1 

; ln2* 

where En is one-half the potential energy of interaction 
of the central molecule in cell type / with its neighbors 
in the cell when all the molecules are fixed in their 
lattice positions and orientations, and Qt is the phase 
integral of the central molecule moving about the cell 
with its neighbors fixed at their lattice positions. 

Our initial inclination was simply to use the above 
expressions. However, we quickly concluded that 
they are neither practical nor appropriate for our pur­
poses. First of all, treating each set of molecular 
orientations consistent with any given configuration 
separately would require an impossibly large number 
of six dimensional integrals to be evaluated numerically. 
This problem we quickly resolved by deciding to treat 
the effects of non-hydrogen-bonded neighbors as per­
turbations. Second, it appears that the interactions 
of molecules with other molecules too far away to be 
included in their basic cells are too large to neglect. 
We chose to approximate these effects by employing a 
dielectric continuum approximation. Third, the vari­
ation of the hydrogen bonding potential in the rota­
tional degrees of freedom is so rapid that classical 
phase integrals are seriously in error in the temperature 
range studied. This we remedied by replacing the 
actual BNS potential with a quadratic approximation 
and employing the thermodynamic functions of the 
quantum mechanical harmonic oscillator. This also 
required some reinterpretation of the physical signifi­
cance of the BNS potential which was, after all, con­
structed using purely classical criteria. Finally, we 
discovered that the BNS potential predicts librational 
frequencies much higher than those experimentally 
observed. Fortunately, our use of the quantum me­
chanical harmonic oscillator formalism allows this to 
be compensated for by means of a simple rescaling 
of the calculated librational frequencies. We now pro­
ceed to discuss these matters in greater detail. 

In dealing with the librational frequencies we found 
it much easier to focus our attention on the spectral 
properties of ice rather than of liquid water, since the 
simpler and much better known structure of ice enor­
mously simplifies interpretation and comparison. 

The magnitude of the librational frequencies (which 
in the case of ice at the melting point appear to be 
distributed over the range 400-1000 cm - 1 correspond­
ing to about 2-5kT22-u) makes the use of classical 
phase integrals impermissible. As we mentioned be­
fore, we originally attempted to employ classical phase 
integrals alone in our treatment of the basic cell prop­
erties. The entropy of ice calculated in this way, 
which is presented in Table I, indicates just how inap­
propriate a procedure this was. When dealing with 
such strong intermolecular forces the classical phase 
integrals do not differ much in value from phase inte­
grals over sets of classical harmonic oscillators. The 
magnitude of the error is due to the fact that the entropy 
of a quantum mechanical harmonic oscillator, i.e., 
a "real" harmonic oscillator, goes to zero at high values 
of hv/kT while that of a classical harmonic oscillator 
decreases without limit to spurious negative values. 

(22) R. Zimmerman and G. C. Pimental in Advan. MoI. Spectrosc, 
Proc.Int. Meet., 4th, 762(1962). 

(23) A. J. Leadbetter, Proc. Roy. Soc, Ser. A, 287,403 (1965). 
(24) H. Prask, H. Boutin, and S. Yip, J. Chem.Phys., 48, 3367 (1968). 
(25) R. E. Shawyer and P. Dean, Discuss. Faraday Soc, No. 48, 

102 (1969). 
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Table I. Thermodynamic Properties of Ice 

Experimental" 
Classical BNS 
Quantum BNS 
Curvature rescaled 

quantum BNS 

G, cal 

-12,738 
-11,469» 
-10,975 
-12,454 

H, cal 

-10,030 
-10,090» 
-9,078 

-10,335 

S, eu 

9.91 
4.65 
7.03 
7.69 

cal/(mol 
0K) 

9.25 
12.08».' 
7.69» 
7.77» 

" Reference 27. b Does not include intramolecular zero-point 
energy change contributions. c Calculated by using analytic dif­
ferentiation of internal energy rather than numerical as in water 
calculations. Probably unreliable due to numerical error. 

We separately calculate the translational and libra­
tional Einstein frequencies26 for cells with two, three, 
and four hydrogen-bonded neighbors. We calculate 
these frequencies separately for each temperature 
studied since, as previously discussed, we vary the cell 
dimensions linearly with temperature. In deriving 
the quadratic approximation to the translational po­
tential we average (with appropriate weighting) the 
BNS potential between hydrogen bonded neighbors 
over the two relative orientations consistent with hy­
drogen bonding. This approximation probably does 
not affect the results appreciably, since our preliminary 
results indicate that the hydrogen bonding potentials 
of the two configurations do not differ by more than 
about 10% throughout the important part of the po­
tential well. In the case of the librational contribu­
tions, the derived thermodynamic quantities must be 
averaged over all six possible orientations of the central 
molecule, since each of the six corresponds to a differ­
ent set of principal inertial axes. In calculating the 
inertia tensors we use the gas phase bond angle but 
increase the bond lengths from 0.96 to 1 A, which we 
believe to be a reasonable estimate of the elongation due 
to hydrogen bonding in condensed phases. The same 
logic was used by Ben-Nairn and Stillinger11 in setting 
the charge-center distance in their potential at 1 A. 
The librational potential is approximated in terms of 
the sum of squares of the angular deviations of each of 
the charges involved in hydrogen bonding from the 
ideal hydrogen-bonding directions. The hydrogen-
bonded neighbor molecules are, of course, taken to be 
fixed in their ideal lattice positions and orientations. 
This form for the quadratic approximation of the libra­
tional potential contains only one parameter. This, 
along with the separation of translational and libra­
tional motions allows the correction of the BNS po­
tential discussed below to be introduced through a 
simple rescaling of the librational frequencies. 

The main difficulty involved in going over to a quan­
tum mechanical formalism is that the BNS potential 
was devised by fitting it to experimental data using 
purely classical techniques. In other words, it is an 
effective pair potential for use in classical mechanical 
formulations. Its efficacy in this respect is evidenced 
by the excellent agreement with experiment of the 
classical calculation of the enthalpy of ice (see Table I)27 

(26) The analysis of the various molecular dynamics calculated 
momentum autocorrelation functions carried out by Rahman and 
Stillinger indicates little coupling between translational and librational 
motions.12 This conclusion supports our separation of the two. 

(27) Calculated from the liquid water data obtained as described in 
section X and the thermodynamic constants of melting quoted by D. 
Eisenberg and W. Kauzmann, ref 14, p 100. 

and of the molecular dynamics calculation of the poten­
tial energy of water by Rahman and Stillinger.12 This, 
of course, does not at all mean that it is an appropriate 
effective potential for quantum mechanical formula­
tions. In addition to the above discussed entropy 
effect, the appearance of intermolecular vibrational 
zero-point energies in a quantum mechanical formula­
tion makes the BNS potential in its original form even 
more unsuitable in this application. There is little 
choice but to modify it in such a way that it can serve 
as an effective potential in quantum mechanical cal­
culations. 

We have found that the simplest such modification 
which appears to be both effective and reasonable is to 
redefine it as the effective potential which encompasses 
all potential energy effects except those arising from the 
variation of intramolecular zero point energies. We 
have, therefore, added on these effects separately in our 
quantum mechanical formulation. As is evident from 
Table I, this redefinition just about cancels out the 
original BNS potential's intermolecular zero point 
energy related insufficiency. We also argue that it is 
probably unsound to attempt to include the effects of 
intramolecular zero point energy changes in a tempera­
ture independent effective potential such as the BNS. 
They are almost certainly strongly temperature de­
pendent in that they are a function of the average 
instantaneous (on the time scale of molecular motions) 
molecular environments and, as such, can be expected to 
be extremely sensitive to the variations of cell structure 
and intermolecular vibrational amplitudes with tem­
perature. This argument also makes our result of little 
structural variation (to be discussed in section XII) with 
temperature consistent with the experimentally ob­
served considerable variation of the positions of 
intramolecular vibrational spectral peaks. Another 
way of describing this effect is to say that hydrogen 
bonds grow weaker with increasing temperature and 
that this weakening results in decreased hydrogen-bond­
ing effects on the intramolecular vibrations. We 
decided to use a semiempirical treatment of these effects 
rather than attempt a more fundamental treatment 
because the conceptual machinery necessary for a 
fundamental treatment is not yet available. 

Adhering to the above discussion, we add on a term 
representing the potential energy contribution of the 
intramolecular zero-point energy decrease on transition 
from vapor to condensed phases. In the case of ice at 
the melting point Whalley28 has calculated this con­
tribution to be — 1.4 kcal/mol and, therefore, much too 
large to be ignored. It is, unfortunately, difficult to 
calculate for liquid water because the O-H stretching 
region of the ir spectrum is rather complicated and, 
furthermore, the available experimental data are in­
adequate. 

We decided to employ the vapor-phase frequencies 
quoted by Eisenberg and Kauzmann29 and the liquid 
phase frequencies given by Bayly, et a/.,30 considering 
the stretching mode distribution to be centered at the 
average of the frequencies of the main absorption peaks 
in the corresponding spectral region. To estimate the 
temperature variations of these frequencies we use the 

(28) E. Whalley, Trans. Faraday Soc, 53,1578 (1957). 
(29) D. Eisenberg and W. Kauzmann, ref 14, p 8. 
(30) J. G. Bayly, V. B. Kartha, and W. M. Stevens, Infrared Phys., 

3,211(1963). 
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results of Fox and Martin.31 The contribution at the 
melting point calculated in this way is —900 cal/mol, in 
good agreement with the above-mentioned result for 
ice. 

A rescaling of the librational curvature is necessary 
because the BNS potential predicts an average Einstein 
librational frequency of 990 cm - 1 and a maximum libra­
tional Einstein frequency of 1270 cm - 1 for ice at the 
melting point, both of which are in gross disagreement 
with available experimental data. The ir absorption 
maximum in this region is at 795 cm -1 .22 Leadbetter's 
detailed analysis of the low temperature heat capacity of 
ice indicates a distribution centered at about 650 cm - 1 .2 3 

Inelastic neutron scattering studies reveal a large peak at 
about 660 cm - 1 and possibly another smaller one in the 
range 800-950 cm~'.24 The numerical evaluation of the 
frequency spectrum of ice carried out by Shawyer and 
Dean indicates a distribution of frequencies over the 
range 430-730 cm -1 .23 There is no evidence whatsoever 
for any significant librational spectral density above 
1000 cm-1.32 

We feel that it is difficult to reach any definite conclu­
sions regarding the exact distribution of librational 
frequencies because of the apparent inconsistencies of 
the available data and the inevitable complexity of any 
theoretical analysis of coupled librational motions. 
However, we may at least attempt to adjust the libra­
tional curvature to minimize its conflict with the data 
presented above. We feel that this purpose is best 
served by decreasing the curvature so that the average 
librational Einstein frequency of ice falls in the range 
650-700 cm -1. This agrees well with Leadbetter's23 

thermodynamic analysis and moderately well with 
Shawyer and Dean's25 calculated spectrum. The two 
lower Einstein frequencies fall in the range of about 500-
650 cm - 1 and are no more than about 120 cm - 1 apart. 
Thus we may tentatively identify the major neutron-
scattering peak at 660 cm - 1 with modes composed 
mostly of the two lower frequency Einstein modes. The 
highest frequency Einstein mode falls in the range 850-
910 cm - 1 and thus may be identified with the ir maxi­
mum and the possible second peak in the neutron scat­
tering spectrum. We feel that the unpredictable nature 
of the ir absorption selection rules which may be ex­
pected in the case of a disordered molecular crystal 
invalidates any objections to the relatively low choice for 
the average frequency on the grounds that the ir peak is 
at a somewhat higher frequency. We have chosen to 
rescale the librational curvature by a factor 0.458 in 
order to set the average frequency equal to 650 cm - 1 in 
agreement with Leadbetter's estimate. 

In calculating the perturbation terms representing the 
effects of non-hydrogen-bonded neighbors we use the 
unmodified BNS potential and classical phase integrals 
as a matter of convenience. We calculate the perturba­
tion terms separately for each neighbor, for each orien­
tation of the neighbor relative to the central molecule, 

(31) J. J. Fox and A. E. Martin, Proc. Roy. Soc, Ser. A, 174, 234 
(1940). 

(32) We wish to note that the spectra of the librational momentum 
autocorrelation functions about the three principal inertial axes calcu­
lated by Rahman and Stillinger12 do not disagree nearly as much with 
the available data for the liquid as does our calculation of the average 
BNS librational Einstein frequency with the data for ice. We believe 
this discrepancy to be due to a cancellation of the curvature error by the 
various other errors in the molecular dynamics calculation which are 
discussed in this paper. 

for each number of hydrogen bonded neighbors and 
each temperature. To represent the potential between 
hydrogen bonded pairs we use the average of the BNS 
potential over the two relative orientations consistent 
with hydrogen bonding as discussed previously. 
Finally, we average these terms over all nine relative 
orientations between non-hydrogen-bonded neighbors 
possible in the lattice and over the three orientations of 
the central molecule relative to the given basic cell 
configuration. 

To give an example, each perturbation term for the 
free energy corresponding to the non-hydrogen-bonded 
neighbor n is of the form 

AS = / - i In { £ exp[-/3(Fbo + Vn)) d r j \ + 

•hn jJ\*pr-/3Kh°]drj 

where the second quantity in braces is simply Qt, Vn is 
the potential energy of interaction of the neighbor n in a 
specific orientation with the central molecule, and the 
averaging is over the nine possible relative orientations. 
The subscript h refers to the number of hydrogen bonds. 
Vh is averaged as mentioned above. 

We evaluate these integrals numerically assuming all 
molecules entering into the potential energy expressions 
except the central molecule to be fixed at their lattice 
positions and orientations. The integration is per­
formed over the coordinates of the central molecule and 
is discussed in greater detail in Appendix III. This 
expression is summed over the values of n consistent with 
the given basic cell configuration and then averaged 
over the three possible orientations of the central 
molecule relative to the basic cell configuration. The 
treatment of the various other quantities is strictly 
analogous. 

The degree of approximation in the above develop­
ment may seem excessive. In truth, we believe that the 
only possible source of significant error is the assump­
tion that the positions and orientations (in the sense of 
hydrogen-bonding directions) of the nonhydrogen 
neighbors are those of an ideal lattice. We discuss this 
further in section XII. Certain detailed considerations 
which we will not go into here indicate that the error 
introduced by the other approximations is insignificant 
in light of the relatively small magnitude of the perturba­
tion terms. 

The form of the potential function makes it apparent 
that interactions between molecules whose centers are 
further separated than the 3.3-A maximum distance for 
which our cell treatment calculates interactions must be 
included in the internal energy. A simple model of 
these interactions is based on the assumption that 
each molecule interacts with a uniform dielectric 
medium (with the bulk dielectric constant) which 
begins just outside of its basic cell. We assume the 
radius of this spherical cavity to be 4 A at 300 K, to 
vary with temperature in the same manner as the cell 
size, and simply treat the dielectric medium as a 
conductor. This is valid, since the difference between 
dielectric-vacuum and conductor-vacuum interface 
properties in systems of this sort is of the order of 1/e, 
which is negligibly small for water whose « has values in 
the range 55-88 for the temperatures dealt with here. 
The conducting medium-molecule interaction is trivially 
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soluble and generates a long-range energy contribution 
of -1.184 kcal/mol at 300 K.83 

No molecular symmetry effects are considered, since 
their ultimate source is the rotational partition function 
of a freely rotating molecule and, therefore, they are 
irrelevant to our model. We also ignore nuclear 
spin statistics in both our calculation and the presenta­
tion of the experimental data. 

VI. Communal Effects 

By this we mean the thermodynamic effects associated 
with the correlation of motions of neighboring molecules 
which are ignored in the cell theory of fluids. In the 
language of lattice dynamics, communal effects consti­
tute the difference between the Einstein model and the 
fully developed Born-Huang34 treatment. 

In light of our general approach, the best way of 
calculating communal effects would be to calculate 
the full intermolecular frequency spectrum in the 
quasiharmonic approximation and subtract out the 
spectrum of the uncorrelated motions of single mole­
cules. Since this is, at best, an impractical proposition, 
we immediately seek simplifications. First, we drop the 
correlation of librational motions with each other and 
with translational motions. This is reasonable, since 
the librational portion of the spectrum is at such high 
frequencies that minor modifications of it are probably 
not very significant thermodynamically and it prob­
ably does not couple very strongly with the considerably 
lower frequency translational modes. 

This reduces the problem to a purely translational 
calculation. We originally attempted to apply the 
translational spectrum approximation technique de­
scribed in section IX to it, but quickly found that the 
communal effects are so small that the inaccuracy of 
our approximation made this approach useless. We 
then calculated the communal effects in a fully occupied 
ice I (c) (diamond-like) lattice at 283 K and the cor­
responding lattice dimensions using Smith's treatment 
for the diamond lattice35 to give us an estimate of the 
quantities involved. The energy effect turned out to be 
negligibly small and the entropy effect turned out to be 
0.391 eu. We felt that this magnitude made any at­
tempt at precision pointless and simply chose to ap­
proximate the entropy effect as 0.391 eu times the frac­
tion of hydrogen bonds intact at any given temperature. 
The assumption of proportionality is probably valid, 
since intermolecular motion correlations may well be 
expected to be transmitted mainly through the hydrogen 
bond network. 

VII. Minimization of the Free Energy 

All properties of the model are easily expressed in 
terms of the \Pt} which must all have values between 
zero and one and must be normalized to unity. To 
ensure that they are nonnegative and normalized at all 
steps of the minimization, we reexpress the free energy 

(33) This problem is trivial because of the symmetry of the positions 
of the four charges on the central molecule about the center of the 
spherical cavity. The four necessary image charges form another regu­
lar tetrahedron whose four vertices are on the four lines passing through 
the center of the cavity and the charges of the central molecule. The 
high symmetry of the two tetrahedrons allows the remainder of the 
calculation to be reduced to little more than an evaluation of two 
charge-charge distances. 

(34) M. Born and K. Huang, "Dynamical Theory of Crystal Lat­
tices," Oxford University Press, London, 1954. 

(35) H. M. J. Smith, Phil. Trans. Roy. Soc, London, 241,105 (1948). 

in terms of the variables {xi} which are related to the 
{Pi} by 

Pt = XiIY, exp(x^) 
3 

and are defined only to within an arbitrary constant 
term. 

Besides the normalization requirement, other con­
straints must be introduced to ensure that the structure 
corresponding to any attainable set of values of the 
{x{j is consistent with our fundamental assumptions 
and physically meaningful in the sense discussed in 
Appendix II. First, there is the constraint introduced 
in section III that the average number of second neigh­
bors be three-fourths of the average number of first 
neighbors. Second, of the various configurations of the 
overlap regions of first and second neighbor cells, four­
teen may occur in dissimilar orientations in the basic 
cell in the sense of the discussion in Appendix II. Upon 
expressing the necessary related constraints in linear 
algebraic form, we found that two of them were re­
dundant in the linear algebraic sense and thus could be 
dropped from further consideration. 

The free energy expression is too complicated to 
directly solve the minimization conditions to yield the 
equilibrium values of the {*<}. Therefore, we use the 
gradient descent technique taking each of the 13 above-
mentioned conditions into account by simply adding 
a term of the form a3C ;

2 to the free energy for each one 
where at is a suitable positive constant and C1 is the 
linear algebraic expression which must equal zero in 
order to satisfy condition j . Although this approach 
may seem somewhat inelegant and bulky, we found it to 
be quite reliable and efficient. We discuss it in greater 
detail in Appendix III. 

VIII. Heat Capacity 
and Kirkwood Correlation Factor 

In computing the heat capacity, we have chosen to 
simply numerically differentiate the calculated values 
of the enthalpy. This is actually a more accurate pro­
cedure than using the greatest possible degree of analyti­
cal differentiation because the latter would involve sepa­
rate numerical differentiations of all 374 basic cell 
probabilities and introduce the possibility of cumulative 
error. We wish to point out that the values of the heat 
capacity calculated from the enthalpy may be expected 
to differ from those calculated from the entropy for 
two reasons. First, we employ an explicitly derived 
expression for the entropy rather than the temperature 
derivative of the free energy. (We do this to keep the 
inaccuracies of our enthalpy expression from affecting 
the calculated values of the entropy too much and vice 
versa.) Second, even if we did use the free energy deriv­
ative as our expression for the entropy and the corre­
sponding expression for the enthalpy, the two expressions 
for the heat capacity would not agree because of treat­
ment of the constraints in minimizing the free energy. 

This problem would not arise if the derivatives of the 
free energy with respect to {P,} were all zero at equi­
librium. In fact, they are equal to minus the deriva­
tives of the constraint terms which we insert into the free 
energy expression in the minimization step. Fortunately, 
the two errors together produce a total discrepancy of 
no more than about 2 cal/(°K mol) throughout the 
temperature range. We believe the enthalpy derived 
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values to be more fundamental because the enthalpy 
expression contains the intramolecular zero-point 
energy and long range interaction effects explicitly. 
(The values calculated from the enthalpy are the only 
ones which we present.) 

The Kirkwood correlation factor18'36 appears in the 
microscopic theory of dielectrics and is generally ap­
proximated as 

g = 1 + E(cos 7,) 
3 

where j ranges over the near neighbors of any given 
molecule and y3- is the angle between the dipole moment 
of the central molecule and the dipole moment of mole­
cule j . 

In our calculation we take the average over phase, 
cell type, and orientations, and include those neighbors 
which appear in the basic cell in the summation to get 
an expression of the type 

g = 1 + Y1PiM, 
i 

where gt is the sum of the average cosines of the angles 
between the dipole moment of the central molecules 
and that of each of its neighbors in cell type i. We use 
only classical phase integrals in this calculation. 

Since the noncentral molecules are assumed to be 
rigidly fixed in their positions and orientations in our 
cell integral evaluations, we may express g( in terms of 
the averaged components of the central molecule's di­
pole moment along three perpendicular axes. We cal­
culated average cosines between the central molecule 
and its hydrogen bonded neighbors and the effects of 
the nonhydrogen neighbors upon these quantities in 
the same way we calculated the various thermodynamic 
perturbation terms. We also calculated the average 
cosines between the central molecule and the various 
non-hydrogen-bonded neighbors separately for each 
neighbor in each relative orientation and added these 
quantities on with suitable averaging. 

We wish to point out, however, that our operational 
definition of g is by no means the only possible one. 
Various other cut-offs of the domain of "near neigh­
bors" and treatments of both direct and indirect long 
range interaction effects, which we completely ignore, 
are possible. (For an example of a completely different 
approach, see ref 12.) For this reason we urge some 
skepticism on the part of the reader regarding our treat­
ment of this problem. 

IX. Translational Frequency Spectrum Estimate 

In another publication37 we describe a technique 
for generating the even moments of the frequency 
spectrum of an arbitrary amorphous substance in terms 
of the intermolecular potential energy function and 
the concentration of certain types of molecular clusters 
in it. This publication should be consulted in order 
to render this section intelligible. 

In this case, the obvious choice of lattice vectors to 
work with are those connecting first and second neigh­
bors. We have derived expressions for the Oth through 
10th moments using the approximation discussed at 
the end of ref 37. These expressions involve contribu­
tions from clusters of five or fewer molecules only. 

(36) D.Eisenbergand W. Kauzmann, refl4, pp 105-112, 191-194. 
(37) O. Weres, Chem.Phys. Lett., 14, 155(1972). 

Further moments could not be evaluated exactly, be­
cause the expressions for them would involve the con­
centrations of molecular clusters which cannot be fitted 
into our basic cell. This means, of course, that their 
concentrations are not expressible in terms of {Pt\. 
Also, the number of distinct closed lattice vector se­
quences which it is possible to construct out of six or 
more nonzero lattice vectors increases very rapidly with 
the number of vectors. 

Unfortunately, we found that six moments were 
not sufficient for our purposes. Therefore, we were 
forced to seek an appropriate approximation to the 
12th and 14th moments. Upon examining the rela­
tive magnitudes of the contributions to the 10th mo­
ment we found that the largest were those of the vector 
sequences associated with the following clusters of 
molecules: the single molecule, the hydrogen bonded 
pair; the hydrogen bonded triplet; and the non-hy­
drogen-bonded first neighbor pair. Of the remaining 
vector sequences, we found that the smaller the number 
of nonzero vectors, the larger the contribution. On 
this basis we chose to approximate the 12th and 14th 
moments by the sums of the contributions of all vector 
sequences associated with the four types of clusters 
specifically enumerated above and of those sequences 
constructed by adding null vectors to all other sequences 
which contribute to the 10th moment. We estimate 
the relative magnitude of the error introduced into 
the values of the two higher moments by this approx­
imation to be of the order of 10~3. 

We then inserted the equilibrium values of {P,} 
into these expressions to obtain the actual values of 
the moments and generated an approximation to the 
spectrum by fitting a polynomial in the second through 
ninth powers of the frequency to the values of the mo­
ments by means of an inverted Hilbert matrix. One 
further assumption, that of a certain maximum fre­
quency, is necessary. The most reasonable estimate 
for this value is the maximum vibrational frequency 
of a fully hydrogen-bonded ice 1(c) network which we 
obtained as a by-product of our study of communal 
effects which is described in section Vl. This value 
is 316 cm -1 . 

We also generated an approximation to the spectrum 
using values for the moments which include only the 
contributions to the higher moments from the four 
major molecular clusters enumerated above. The 
approximation obtained by this procedure differs 
only insignificantly from that obtained from the full 
treatment described above. This result tends to con­
firm the usual assumption that the hydrogen-bonding 
network is the over-ridingly important structural 
characteristic of water. 

X. Sources and Preparation of the 
Experimental Data 

The thermodynamic standard states which we em­
ploy in this work are as follows: for the enthalpy, 
the infinitely dilute vapor at absolute zero; for the 
entropy, the one relative to which the entropy of ice 
at absolute zero is just the residual entropy with the 
nuclear spins ignored. Most tabulations of experi­
mental data are, however, relative to water at the 
normal melting point and, therefore, the experimental 
values of the enthalpy, entropy, and free energy must 
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Figure 2. Calculated and experimental free energies. The points 
indicate experimental values. The dashed line indicates unmodified 
BNS values and the solid line indicates librational curvature re-
scaled values. 
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Figure 3. Calculated and experimental enthalpies. Same repre­
sentation as in Figure 2. 

be suitably converted in order to be comparable with 
our calculated values. 

The above considerations do not apply to the heat 
capacity and we simply use Osborne's values as quoted 
by Dorsey.38 

To obtain the correct entropy values we added on 
the residual entropy and the calorimetric entropy of 
the liquid at the melting point, as calculated by Giauque 
and Stout,39 to the values of Osborne, Stimson, and 
Ginnings quoted by Dorsey.40 

To convert the values of the enthalpy to our standard 
state, we first calculated the enthalpy of the ideal vapor 
at 673 K relative to the liquid at the melting point by 
using Havlicek and Minkovsky's value for the real 
vapor quoted by Dorsey41 and the second virial co­
efficient for that temperature calculated from the for­
mula given by Keyes.42 Friedman and Haar43 theoret­
ically calculated the various thermodynamic functions 
of the ideal vapor using the same standard state we 
do. We obtained the value of the enthalpy at 673 K 
from their tables by interpolation and subtracted the 
quantity described immediately above from it. This 
gave us the enthalpy of the liquid at the melting point 
relative to our chosen standard state. Finally, we 
added this quantity to the Osborne, Stimson, and Gin­
nings values of the enthalpy quoted by Dorsey.44 

We generated the free energy values from the entropy 
and enthalpy values and used the International Skeleton 
Steam Tables density values quoted by Dorsey.45 

XI. Results 

The greater bulk of our results is presented in Figures 
2-8 and Tables I—III. It is apparent that rescaling 
the librational curvature of the potential leads to reason­
ably good agreement with experiment in the enthalpy 
and entropy results and improved agreement with 
experiment in the heat capacity results. All liquid 
properties other than the translational spectrum were 
calculated at ten degree intervals. 

(38) N. E. Dorsey, "Properties of Ordinary Water Substance," 
Reinhold, New York, N. Y., 1940, p 258. This is the most extensive 
compilation of water data available but is weak on spectroscopic data 
due to the date of publication. 

(39) W. F. Giaque and J. W. Stout, J. Amer. Chem. Soc, 58, 1144 
(1936). 

(40) N. E. Dorsey, ref 38, p 587. 
(41) N. E. Dorsey, ref 38, p i 14. 
(42) F. G. Keyes, Trans. ASME, 78, 555 (1958). 
(43) A. S. Friedman and L. Haar, /. Chem. Phys., 22, 2051 (1954). 
(44) N. E. Dorsey, ref 38, p 585. 
(45) N. E. Dorsey, ref 38, pp 200-202. 

Figure 4. Calculated and experimental entropies. Same repre­
sentation as in Figures 2 and 3. 

Table II. An Analysis of the Values of Enthalpy and Entropy 
Generated by the Rescaled Curvature Calculation 

Enthalpy, kcal/mol 
Lattice 
Translational" 
Librational" 
Non-hydrogen-bonded neighbor6 

Long range 
Intramolecular zero 

Total 
Experimental total 
Entropy, eu 

Configurational 
Orientational 
Translational 
Librational 

pointc 

Non-hydrogen-bonded neighbor1 

Vibrational 
Total 
Experimental total 

/ = 0° 

-8.296 
1.729 
2.517 

-1.325 
-1.190 
-0.900 
-7.465 
-8.594 

4.48 
1.70 
7.12 
2.00 

-1.17 
0.26 

14.39 
15.17 

t = 100° 

-8.088 
2.290 
2.858 

-1.271 
-1.166 
-0.694 
-6.071 
-6.791 

4.48 
1.69 
9.28 
3.44 

-0 .95 
0.26 

18.20 
20.79 

" Includes zero point energy. 
: Relative to vapor. 

1 Refers to perturbation terms. 

Table III. Experimental and Calculated Thermodynamic 
Constants for Melting 

AH, cal 

Experimental" 1463 
BNS 2822 
Curvature rescaled BNS 2864 

ACp, 
AS, eu cal/(mol 0K) 

5.26 8.91 
6.20 3. II6 

6.29 4.43> 

° Reference 27. b Unreliable because ice values do not include 
intramolecular zero-point energy change contributions. 

We will restrict further discussion to the rescaled 
curvature results unless otherwise indicated. 
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Figure 5. Calculated and experimental heat capacities. Same 
representation as in Figures 2-4. 
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Figure 6. Calculated and experimental densities. The points 
represent experimental values and the solid line represents libra-
tional curvature rescaled potential values. The unmodified BNS 
values differ from the latter only insignificantly and are not plotted. 

Throughout the temperature region studied there is 
very little variation in the equilibrium basic cell prob­
abilities. The four most important basic cell configura­
tions are shown in Figure 7 along with their concentra­
tions at the melting and boiling points. The number 
of hydrogen bonds per molecule, p, and average number 
of nearest neighbors are nearly constant at about 1.35, 
0.587, and 4.7, respectively. The last is in excellent 
agreement with the experimental value 4.5 reported by 
Narten, et al.,iR and certainly well within the limit of 
error of the interpretation of the experimental data. 
The fractions of molecules with two, three or four hy­
drogen-bonded neighbors are nearly constant through­
out the temperature range at about 46, 38, and 16%, 
respectively. Our calculated value for the Kirkwood 
correlation factor is about 1.87 throughout the tempera­
ture range. The position of the main peaks in the 
translational frequency spectrum approximation pre­
sented in Figure 8 agree well with the ir and inelastic 
neutron scattering data quoted by Eisenberg and 
Kauzmann.46 The negative portions of the spectrum 
and its high end divergence are numerical artifacts 
arising from our technique for fitting the spectrum to 
the moments. We obtained the same structural and 
spectral results from the unmodified potential calcula­
tion. 

We believe that a goodly portion of the error in 
the entropy at the lower temperatures is due to the 
oversimplified treatment of the effects of the correla­
tion of motions of neighboring molecules. Although 
these results include an approximation to the effect of 
translational correlations, they completely ignore the 
correlations of librational motions both among them-

(46) D. Eisenberg and W. Kauzmann, refl4, p 228. 

25.3(27.3) 13.3(14.2; 

Figure 7. The four most important basic cell configurations. The 
numbers above each represent its percentage concentration at t = 
0 and t = 100°, the latter in parentheses. 

g(u 

Figure 8. Approximation to the translational frequency spectrum 
at f = 10°. The ordinate scale refers to gjN represented as a func­
tion of the frequency divided by the maximum frequency. 

selves and with translational motions (see, however, 
ref 26). If intermolecular correlation affects the libra­
tional spectrum the same way that it affects the trans­
lational spectrum of most three-dimensional systems, 
i.e., causes a considerable number of modes to appear 
at about one-third or one-half the Einstein frequency, 
this alone would be sufficient to explain most or all 
of the observed entropy error. Another related effect 
is that of possible anharmonicity in the vibrational 
modes at the lower end of the translational spectrum 
which would cause them to contribute more to the 
entropy than purely harmonic degrees of freedom would. 
This could be tested by measuring the temperature 
dependence of the 70 cm - 1 spectral peak in ice. If a 
rapid rate of decrease of the maximum frequency with 
temperature were found at hvjkT ~ 1, corresponding 
to closer spacing between higher levels, it would be 
evidence for the existence of such an anharmonicity 
effect. (This suggested use of low temperature ice 
data to study liquid water at normal temperatures is 
valid, because the information sought has to do with 
the intermolecular potential energy function which 
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must be defined to be the same in both ice and water 
if the concept is to be meaningful.) 

If the above mentioned correlational effects were 
the only source of error in the entropy calculation, one 
would expect that the error in the calculated entropy 
of water at the melting point would be about two-
thirds that of ice, since our results indicate that about 
two-thirds of the hydrogen bonds remain intact in 
water. Actually, the observed ratio is only about one-
third. This indicates the existence of a partially com­
pensating error of about 0.8 eu/mol in one of the other 
entropy terms. The probable source of this discrepancy 
becomes evident when the calculated values of the 
enthalpies of water and ice at the melting point are 
examined. The calculated enthalpy of ice is in almost 
perfect agreement with experiment while the calculated 
enthalpy of water is about 1.2 kcal insufficiently nega­
tive. This enthalpy error is probably due largely to the 
averaging over orientations of the effects of non-hydro­
gen-bonded near neighbors which are assumed to be 
at the same lattice position and charge orientations 
relative to the central molecule in each cell regardless 
of the relative dipole orientation, as discussed in sec­
tion V. In reality, the generally attractive non-hy­
drogen-bonded neighbor pairs must be closer together 
than the generally repulsive pairs, leading to lower 
enthalpy and entropy contributions from the cell 
terms. Another error, probably of the same sign, is 
introduced into the values of the enthalpy and entropy 
generated by the rescaled curvature calculation by the 
use of the unmodified BNS potential and classical 
phase integrals in the evaluation of the non-hydrogen-
bonded neighbor effect perturbation terms. Assuming 
a total value of 0.8 eu/mol for these errors also accounts 
for the error in the calculated entropy change associated 
with melting. 

We believe that the rapidly increasing entropy error 
at the higher temperatures studied is due largely to 
the gradual breakdown of the validity of our micro-
structure hypothesis with increasing temperature. This 
view is supported by the rapid breakdown of inter-
molecular correlation beyond the first neighbor dis­
tance evident in the experimental radial distribution 
function above about 5O0C.2a However, we feel that 
this deficiency should not hurt our model in its most 
important potential applications, those dealing with 
biological systems, since biological processes all take 
place well below this temperature. 

A quick comparison of Figures 5 and 6 reveals that 
the calculated density and heat capacity err most in 
the lower portion of the temperature range. We be­
lieve that these low temperature errors are due to the 
inapplicability of our configurational entropy expres­
sion to highly hydrogen-bonded structures. This 
inapplicability is indicated by the fact that the value 
of the configurational entropy of ice predicted by it is 
— 1.38 eu/mol, instead of zero as it should be. Un­
doubtedly this error carries over to highly hydrogen-
bonded water structures, causing them to appear un-
realistically thermodynamically unstable relative to 
less highly hydrogen-bonded structures. The general 
opinion about the thermal expansion coefficient anom­
aly is that it is due to a decrease in the extent of the hy­
drogen bonding overcoming normal thermal expansion. 
If this were the case such an error in the configurational 

entropy would tend to mask it, as does indeed happen 
in our calculations. (We wish to stress that the cal­
culated basic cell configuration probabilities and all 
quantities derived from them depend on the error in 
the derivatives of the free energy expression near the 
minimum much more than on its values.) 

Before proceeding to an analysis of the calculated 
heat capacity it is necessary to discuss the much re­
ferred to but rarely scrutinized distinction between the 
configurational and vibrational components. In terms 
of the simple cell model, the vibrational contribution 
refers only to the portion of the heat capacity arising 
from the individual molecules "climbing the walls" 
of the potential surfaces of their cells with fixed basic 
cell structures and probabilities. We calculate it by 
using the quantum mechanical harmonic oscillator 
heat capacity expression and the various Einstein fre­
quencies of translation and libration. These contribu­
tions cannot be greater than 11.92 cal/(mol°K) (6R). 
The remaining contributions all appear as part of the 
configurational heat capacity. They include the effects 
of both intramolecular and intermolecular zero-point 
energy changes, basic cell structural changes, basic 
cell configuration probability changes and, in the case 
of our calculation, the effect of long-range electrostatic 
interaction changes. In our calculations the sum of 
the contributions from all of these sources averaged 
over the temperature interval dealt with is 2.97 cal/ 
(mol 0K). Since the difference between the total aver­
age heat capacity of 13.96 cal/(mol 0K) and this quantity 
is 11 cal/(mol 0K), very nearly the maximum possible 
value of the vibrational component, we are forced to 
conclude that most or all of the heat capacity error arises 
from the configurational component. 

An immediate corollary which the reader could draw 
from the above conclusion is that our result of no varia­
tion of the extent of hydrogen bonding is seriously 
in error. However, we ask him to consider the follow­
ing. The average heat capacity error of about 4 cal/ 
(mol 0K) corresponds to an enthalpy change error 
over the hundred degree interval of about 400 cal. 
On the basis of our hydrogen bond energy and hydro­
gen-bond associated intermolecular zero-point energy 
results we estimate the enthalpy change associated with 
the formation of a mole of hydrogen bonds to be about 
— 5 kcal. This means that the heat capacity error 
indicates an error of only 0.08 hydrogen bond per 
molecule in the calculated numbers of hydrogen bonds 
at the boiling point relative to the melting point. This 
is only about 6% of the total. In fact, we believe that 
some part of the error arises from the artificially con­
strained basic cell structure employed and from a break­
down of the microstructure hypothesis. It is quite 
evident that the cell structure must change with temper­
ature in ways other than simple thermal expansion. 
(This may also be treated as an effect of the anharmo-
nicity of the intermolecular potential, from which it 
ultimately arises.) We do, however, believe that 
some change in the number of hydrogen bonds does 
occur as argued above in the discussion of the cal­
culated low temperature heat capacity and density 
errors. 

The neutron scattering data indicate a decrease of 
the peak librational frequency from 580 cm - 1 at the 
melting point to about 400 cm - 1 near the boiling point.46 
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This also seems to contradict our result of very little 
structural change with temperature. However, we 
wish to argue against this interpretation. Part of this 
variation is undoubtedly due to the increasing con­
tributions from "hot" state excitations, which can be 
expected to occur at lower energies due to anharmo-
nicity effects. Another, and probably more important, 
origin is that the librational force field is related to 
the translational motions in the same way that the 
intramolecular vibrational force field is related to the 
various intermolecular motions as discussed in section 
V. 

Upon examining the most probable basic cell con­
figurations shown in Figure 7, it is evident that our 
initial assumption of an ice VIII like space lattice has 
not at all constrained our resulting structure to resemble 
this substance. Of the four configurations shown, 
only the first appears to be part of an interpenetrated 
network structure and even here the continuation of the 
structure does not necessitate it. This makes our re­
sults consistent with the observation made by Rahman 
and Stillinger12 that interpenetration does not appear 
to be an important structural feature of their molecular 
dynamics generated sample structures. Interpenetra­
tion exists, but is of limited extent. 

Our calculated value of 1.87 for g corresponds to a 
value 8.82 for the quantity /x2g, which is more easily 
experimentally determined. The value of /j,2g at 270C 
reported by Harris, et al.,47 is about 12.08. There are 
two possible sources of error which probably tend to 
lower the calculated value. First, our basic cells are 
fairly small. Second, our constrained cell structure 
tends to overweigh lower g relative orientations which 
appear to generally be energetically less favorable. 

XII. Possibilities for Future Research 

On the basis of our results we feel that the major 
problems which must now be dealt with in the realm 
of theoretical water research are the previously dis­
cussed error in the BNS potential and quantum effects. 

One possible approach to developing an improved 
potential function would be to use more than four 
charges. Their positions and magnitudes could be 
adjusted to duplicate the electrostatic potential field 
of the real molecule by using quantum chemical results. 

The quantum effects problem appears to be unavoid­
able in all possible ab initio or nearly ab initio treat­
ments and models. It will probably also exist in most 
future treatments of strongly interacting molecular sys­
tems. In this case it was possible to deal with them by 
suitable lattice dynamics-like approximations. More 
accurate or more complex work will, however, probably 
require the development of more sophisticated and 
general techniques for dealing with them. Possible ap­
proaches would be to develop tractable quantum correc­
tion terms to the Percus-Yevick equation or to the 
classical equations of motion (for use in molecular dy­
namics calculations). Another possibility would be to 
develop a general technique for deriving an effective 
classical or purely harmonic potential corresponding to 
any given actual quantum mechanical potential. 

Other general problems concern the interpretation 
of experimental spectra in terms of microstructure and 

(47) F. E. Harris, E. W. Haycock, and B. J. Alder, J. Chem. Phys., 
21,1943(1953). 

the analysis of intermolecular effects upon intramolec­
ular vibrations. Although numerous attempts have 
been made in these directions, we have found the 
generality and reliability of the results to be too low 
to contribute to the construction of our model in any 
but the crudest ways. 

We will now detail some specific possible improve­
ments to our model. We wish to caution the reader 
that it probably would not be worthwhile to attempt 
their implementation until our model is further justified, 
because the amount of labor involved in each of them 
is considerable. 

As mentioned in section III, we originally envisaged 
using the Hijmans-De Boer19 approach to the Ising 
model in our treatment of the configurational entropy. 
We see two possible advantages to this approach. 
First, Bell's10 results indicate that this sort of treatment 
is capable of reproducing the density anomaly, which 
our treatment seems incapable of. We feel that this 
also indicates the possibility of reducing or eliminating 
the minor but irritating problems we encountered in 
calculating the configurational heat capacity and the 
number of hydrogen bonds. Second, the various 
constraints can be dealt with through Lagrange multi­
pliers. In other words, our 374 minimization require­
ments can be reduced to as many simultaneous equa­
tions as there are constraints. Further, these si­
multaneous equations are of a form which is particularly 
well suited for solution via Newton-Raphson iteration. 
The Newton-Raphson technique would allow arbi­
trarily high accuracy solutions for the equilibrium 
values of [Pi] to be obtained. More specifically, the 
nonvanishing free energy derivative problem discussed 
in section VIII would be eliminated. This would re­
move the related portion of the ambiguity in the cal­
culated values of the heat capacity and keep similar 
problems from developing in treating other higher 
derivative quantities. However, we wish to note that 
a goodly number of constraints arise in the Hijmans-
De Boer treatment which are not present in our treat­
ment. Also our preliminary tests of the Hijmans-De 
Boer treatment indicate that the Newton-Raphson 
iteration is unsuitable for obtaining an initial estimate 
of the solution. This difficulty could, however, be 
circumvented by obtaining the initial solution by a 
steepest descent method such as the one employed by 
us and then using the Newton-Raphson technique to 
obtain solutions of any degree of accuracy required. 

At each temperature, each cell contribution is ex­
pressed as a properly weighted sum of contributions 
from seven harmonic oscillators and ten perturbation 
terms. The number of independent terms necessary 
to completely describe each property at each tempera­
ture, therefore, is only 33, indicating that most of the 
374 variables employed by the present authors are 
redundant. We feel that a rederivation of the full 
model in terms of considerably fewer than 374 inde­
pendent variables is certainly possible, but not neces­
sarily practical. This possibility should, however, be 
kept in mind by future investigators. 

Probably, the most important improvement of the 
cell contribution results would arise from allowing cell 
structural variations with temperature other than simple 
thermal expansion. An especially useful modifica­
tion of this type would be to allow different relative 
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displacements of the equilibrium configurations for 
pairs of non-hydrogen-bonded neighbors of different 
relative orientations. Probably the best way of deter­
mining the magnitude of such cell distortions would 
be to minimize the free energy in respect to them at 
each temperature. It would also be useful to develop 
a tractable technique to deal with nonadditive perturba­
tion effects. This would improve the accuracy of 
our non-hydrogen-bonded neighbor interaction results. 

As noted in section V, our treatments of the longer 
range interactions and the Kirkwood factor are rather 
crude. A possible alternate approach to these related 
problems would be to develop a general method of 
describing long range intermolecular correlation in 
terms of short range correlation with intermediate 
molecules. This, of course, would also be of great 
value in calculating the long range portions of molec­
ular distribution functions. 

The obvious way to improve the treatment of the 
effects of the correlation of molecular motions would 
be to carry out the correct cluster expansion.37'48 A 
standard cluster expansion using the actual potential is, 
however, not practical due to the enormous numerical 
complexity involved. Also, the magnitude of the 
quantum effects prohibits the use of classical cluster 
integrals. A more reasonable alternative would be 
to use the quasiharmonic approximation to the actual 
potential, including the coupling between all six co­
ordinates of each molecule. Anharmonicity effects 
could be calculated by using an appropriate perturba­
tion technique. Fortunately, our calculated spectrum's 
good agreement with experiment indicates that the 
clusters which must be dealt with need not be large. 
Also, the close agreement of our two translational 
spectrum estimates indicates that probably only fully 
hydrogen-bonded clusters need be considered. 

We believe that our model is easily extendable to 
deal with certain types of solutions; in particular, 
those of inert gases and those of certain types of 
macromolecules. Solutions of inert gases should be 
easy to treat because here one basically needs only to 
introduce basic cells which contain solute atoms into 
the calculation. Evaluating the appropriate cell inte­
grals and perturbation terms and extending the con­
straints and configurational entropy expressions should 
involve no great difficulty. One should, however, be 
careful to appropriately modify the structure of those 
cells which contain solute atoms to be consistent with 
the lack of solvent-solute hydrogen bonds. Other 
small solutes such as methane, ammonium, hydroxyl, 
and hydronium ions could also be studied. (In 
dealing with ionic solutions one should, of course, be 
careful to account for the long range interionic forces, 
but it seems that an appropriate dielectric continuum 
approximation should be easy to derive.) Most other 
solutions with solutes between the extremes of the inert 
gases and macromolecules appear to be intractable be­
cause of the difficulty of identifying the structures and 
calculating the properties of the basic cells of the solute 
molecules due to the size of the solute and the com­
plexity of the solute-solvent potential interaction. The 
case of macromolecular solutions is exceptional in 
that the solute-solvent mass and concentration dis­
parities make it possible to ignore the solute cell con-

(48) J. De Boer, Physica (Utrecht), 20, 655 (1954). 

tributions. Therefore, the problem of calculating the 
thermodynamic effects of the presence of the solute 
molecules reduces itself to calculating the solute mole­
cules' effects upon the environments of the neighboring 
water molecules. This, of course, would not: solve the 
formidable polymer conformational problem, but it 
would allow solvent effects to be calculated accurately 
which is a precondition for a full solution of the problem. 
In the case of rigid macromolecules the conformational 
problem does not exist, thereby allowing a complete 
treatment. 
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Appendix I. Bell's Model 

Bell10 postulates a body centered cubic structure 
and treats the liquid as a lattice gas just as we do. He 
employs the Guggenheim-McGlashan21 treatment of 
the lattice statistical problem using the smallest dis­
torted tetrahedron which appears in the body centered 
cubic lattice as the basic figure. He includes the orien­
tations of the molecules in the definition of the figure 
configurations, thereby eliminating the necessity for a 
separate orientational entropy calculation. The only 
calculated results which he presents are state surfaces, 
graphs of isothermal compressibilities, and tables of 
critical point properties, numbers of nearest neighbors, 
and ice lattice energies corresponding to three sets of 
potential energy parameters. 

The intermolecular potential is represented by an 
expression which contains three adjustable parameters. 
These represent the energy of formation of a hydrogen 
bond, the interaction energy of two nearest neighbor 
molecules arising from interactions other than hydrogen 
bonding, and a "repulsion" parameter which is as­
sociated with the fully occupied configuration of the 
smallest triangle of sites occurring in the body centered 
cubic lattice. 

Bell's general approach was to develop the simplest 
possible plausible lattice-statistical model and exploit 
this simplicity to obtain the maximum possible range 
of results. Our approach, in contrast, was to con­
centrate primarily on the thermodynamic functions 
in the normal liquid range of temperatures and intro­
duce as many fine details as seemed necessary to produce 
reasonable agreement with experiment. For this reason 
we consider the two models to be complementary 
rather than competitive. We feel that together they 
constitute an extensive test of the validity of our com­
mon basic assumptions. 

The major drawback caused by the extreme sim­
plicity of Bell's model is that it allows only qualitative 
agreement with experiment in most cases. On the 
other hand, he was able to calculate state surfaces, a 
task which our version is nearly incapable of. We 
feel that the major accomplishment of Bell's work 
was to demonstrate that the body centered cubic 
lattice-statistical model is capable of generating a 
density maximum and an isothermal compressibility 
minimum. Something which we find upsetting but 
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not unexpected is that Bell's results show no trace of a 
liquid-solid phase transition. Instead of a distinct 
transition between two phases, there is only a gradual 
variation of density with temperature such as one 
would expect in a glassy substance. We feel that this 
also bodes ill for any attempt to extend our approach 
in that direction. 

We also wish to make some comments regarding 
Bell's approach itself. One of his main criteria for 
adjusting the values of the energy parameters is the 
accuracy with which they duplicate critical point 
properties. We believe this to be an unfortunate pro­
cedure because the lattice gas model is rather unsuit­
able for depicting the gas phase. Hence, parameters 
fixed in this way must contain a considerable error 
from this source alone. Also, we have strong reserva­
tions about the use of the repulsion parameter, whose 
purpose appears to be primarily to ensure that the fully 
occupied lattice structu re(/.<?., ice VII like structure) is 
thermodynamically unstable relative to the cubic ice 
(diamond like) structure at low temperatures and pres­
sures. We do not deny that this is a valid considera­
tion, but believe that it could be dealt with more real­
istically. As the model stands, this contribution adds 
an unrealistically large positive term to the free energy 
of considerably less dense structures. We believe that 
this is the cause of the rather low densities generated 
in the solid temperature range at low pressures. The 
relative instability of the high density structure is ob­
viously due to the fact that neighboring molecules in 
it are squeezed together by all the other molecules 
around them; i.e., it is a cooperative effect. If a small 
region of that structure, say on the order of three or 
four sites, borders on less dense regions, it is most 
probably much more stable than if the structure were 
uniformly dense. We conclude this because the pres­
ence of nearby regions of lower density must allow 
for some distortions which release the intermolecular 
repulsive forces. We suggest that this parameter be 
replaced by another term, probabilistic in form, added 
on to the internal energy to account for the communal 
repulsive interactions in somewhat larger regions of 
high density without spuriously destabilizing lower 
density structures. 

Finally, we strongly disagree with Bell's interpreta­
tion of the actual appearance of the structure of the 
liquid. He suggests that it consists of fairly large re­
gions of dense ice VIII like structure and less dense 
cubic or hexagonal ice like structure. This interpreta­
tion is, of course, invalidated by X-ray scattering data.2 

Fortunately, however, this interpretation is not used 
in any further stage of his work and may, therefore, 
be disregarded without invalidating any of his deriva­
tions or results. 

Appendix II. Lattice Statistics 

The models which we chose to emulate in our treat­
ment of the configurational entropy problem are the 
theory of disordered crystalline alloys (which is iso-
morphous with the Ising model of ferromagnets) and 
Pauling's calculation of the residual entropy of ice.17 

In both the calculation of the entropy starts with the 
concept of a certain spatial lattice over which the rel­
evant structural entities are distributed at random. 
In Pauling's calculation, these entities are protons and 

free electron pairs. In the Ising model, they are basic 
cell configurations of up and down spins distributed 
over all basic cells in the lattices with given probabilities. 
(In general, the concept of basic cell, also referred to 
as the basic figure, is defined considerably more flex­
ibly than in our work, occasionally referring to such 
simple groups of lattice sites as pairs and triplets.) 
A random distribution is initially assumed as a matter 
of calculational convenience. 

This initial estimate involves a large degree of over­
counting because not all of the configurations counted 
therein are physically possible. In the Pauling calcula­
tion, the initial estimate includes configurations in 
which some molecules have fewer or more than two 
protons which is, of course, a physical impossibility. 
In the Ising model, neighboring basic cells overlap, 
and it is necessary that the overlapping parts of each 
cell have identical configurations. Otherwise, certain 
sites would have both up and down spins assigned to 
them simultaneously, again a physical impossibility. 
Other factors are multiplied in to compensate for this 
overcounting. Multiplied together, they constitute an 
estimate of what fraction of the distributions in the 
original random ensemble are physically possible. 
In the Ising model, the typical derivation of this quantity 
is as follows. Each basic cell is considered separately. 
It is assigned a certain configuration and the configura­
tions of the remainder are treated as an ensemble of 
all possible combinations consistent with the original 
random distribution. The problem is to calculate 
what fraction of the distributions of the configurations 
in this ensemble are consistent with the initially as­
signed configuration of the given basic cell. In the 
Pauling calculation, the basic cell of a given configura­
tion is replaced by an oxygen atom with one of the six 
arrangements of protons around it consistent with a 
neutral molecule. The consistent overlap configura­
tion requirement is replaced by the requirement that a 
proton must be hydrogen bonded to a free-electron 
pair and vice versa. The total restriction factor is 
(6/ie)'v- The (Vie)** arises because there are 24 possible 
arrangements of protons on the four hydrogen bonds 
a given molecule is engaged in and only one of them 
is consistent with neutrality and the given orientation. 
The factor of 6V accounts for the existence of six pos­
sible orientations of each molecule. 

In the case of the Ising model, the equilibrium basic 
cell configuration probabilities must still be found. 
This is done by deriving a suitable expression for the 
internal energy in terms of the basic cell probabilities, 
combining the energy and entropy expressions into an 
expression for the free energy, and minimizing. This 
minimization must be performed under suitable con­
straints. First of all, the basic cell probabilities must 
be normalized. (The same applies to any sets of con­
figurational probabilities of lattice sections smaller 
than the basic cell which might appear in the calcula­
tion, but this possibility does not concern us here.) 
Another type of constraint arises because some of the 
configurations of the various basic cell overlap regions 
might be asymmetric in respect to the group of sym­
metries of the basic cell. Let us assume that a given 
overlap region configuration may occur in two non-
similar orientations in a basic cell. The requirement 
of overlap region consistency demands that its concen-
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tration in both of the orientations be equal. To see 
that this is so, consider the set of all basic cells dis­
tributed over the lattice with a certain number of over­
lap region configurations of the given type within them 
in the first orientation. These overlap configurations 
must, of course, appear an equal number of times in 
the full set of basic cells in the other orientation if the 
distribution of basic cell configurations is to be physi­
cally acceptable. Since the concentrations of the over­
lap configurations in both orientations can always be 
expressed as linear combinations of the basic cell 
probabilities, these constraints are expressible as linear 
conditions on the basic cell probabilities. (Certain 
other constraints of this type arise in some treatments 
of the Ising model but, again, this does not concern 
us here.) 

Appendix III. Computational Details 

All of the numerical work reported was executed 
on the IBM 360/65 installation at the University of 
Chicago using the Fortran IV G level compiler. 

The calculations which were the most expensive in 
their final form were those which dealt with the gen­
eration and characterization of the basic cell configura­
tions, the evaluation of the cell property integrals, 
and the final minimization of the free energy. 

The generation and characterization of the basic cell 
configurations algorithms were coded using the two 
byte integers zero and one to represent vacant and 
occupied positions in the basic cell. The configura­
tions were initially generated by forming all possible 
combinations of the eighteen allowed nonsimilar 
first neighbor configurations with each of the fifty 
allowed second neighbor configurations. Each re­
sulting configuration was then tested to eliminate 
those that did not satisfy the first-hydrogen-bonded 
neighbor minimum hydrogen bonding requirement. 
Finally, each of them was compared with the others to 
eliminate those that were actually the same except for 
being in different orientations within the cell. The 
generation of the 374 configurations plus an evaluation 
of the degree of symmetry of each one (most often 
none) took about 5 min of machine time. An inde­
pendent program generated the expressions for the 
concentrations of the various molecular clusters which 
appear in the spectral analysis and the minimization 
constraints. This step required about 3 min of com­
puter time. 

In numerically evaluating the various cell integrals, 
we restricted the integration to the most important 
phase region, that in which the oxygen atom is within 
a cube of one-quarter the edge length of the edge length 
of the basic cell at the center of the basic cell, the first 
Euler angle in less than 30°, and the sum (modulo 
360°) of the second and third Euler angles is between 
— 30 and 30°. We employed the Conroy algorithm49 

using 1004 points. We also performed some numerical 
tests on selected integrals to estimate the integration 
error. The error introduced by restricting the range of 
integration appears to be less than 1 %. Increasing 
the number of integration ponts to 4822 changes the 
values of the integrals by only a few percent. Therefore, 
we may safely conclude that the numerical error in 
this calculation is not significant because it is almost 

(49) H. Conroy,/. Chem.Phys.,47, 5307 (1967). 

certainly overwhelmed by that introduced by our var­
ious derivational approximations. (It appears, how­
ever, that the numerical error may be significant when 
the heat capacity contributions are calculated in the 
analytically differentiated form which requires taking 
the difference of combinations of numerically evaluated 
integrals.) 

A large increase in computational efficiency can be 
realized if it is recognized that the only change that 
occurs in the BNS potential under a transformation 
belonging to the tetrahedral group is a permutation 
of the charges' signs. The charge-charge distances, 
the calculations of which comprise the better part of 
the integral evaluations, do not change. This allows 
the electrostatic potential energies of a pair of mole­
cules in all 36 relative orientations to be calculated 
simultaneously. Furthermore, there are only nine 
relative orientations which differ in the absolute mag­
nitude of the electrostatic interaction. The other 27 
may be obtained from these nine by total charge in­
versions of one or both molecules. The dispersion 
component of the potential energy is, of course, the 
same for all 36. (In practice we used only three rela­
tive orientations averaging over different orientations 
of the given basic cell configuration to account for the 
three possible orientations of the central molecule. 
A further reduction of computational time is possible 
if one chooses to eliminate cell structural variations 
with temperature, thus allowing the same set of poten­
tial energy values to be used to evaluate the phase 
integrals at all tempertures.) As mentioned in sec­
tion VIII, the major task involved in calculating the 
Kirkwood correlation factor is evaluating the average 
projections of the central molecule's moment on the 
three spatial axes. These may be expressed as very 
simple combinations of the matrix of rotation relating 
the central molecules' actual angular position to the 
ideal lattice axis. 

The time required to generate the full set of potential 
energy values for one temperature is about 3 min; 
that required to evaluate all of the various phase in­
tegrals, including those entering into the evaluation 
of the analytically differentiated form of the heat ca­
pacity and the Kirkwood correlation factor, is about 
40 sec. 

Our minimization program employs a variable step 
length algorithm. In this case, we define the step 
length in terms of the reduction in the free energy per 
step. We start out with an initial value of the free 
energy (including the constraint terms), its gradient 
with respect to [P1) at the given point, and an initial 
step length. We then multiply the gradient vector 
by the appropriate factor so that a translation in P4 

space along the gradient would lead to a free energy 
reduction equal to the step length if the free energy 
were purely linear in {Pi}. Next, we perform this 
translation and calculate a new value of the free energy. 
The two values of the free energy and knowledge of 
the initial step length provide three pieces of informa­
tion which are then used to generate an approximation 
parabola between the two points along the initial gra­
dient direction. We approximate the actual minimum 
in the given projection of {P4} space as being the min­
imum of the approximation parabola. If this point is 
at between one-half of the modified gradient and its 
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full length, we take it as the new initial point and start 
over. If this point is outside of the stated interval, 
we temporarily halve or double the initial steplength 
and start over at the initial point. If either of these 
procedures is performed in the course of two consecu­
tive iterations the characteristic quantity is either halved 
or doubled as appropriate. Suitable optional courses 
of action are built in to allow for the possibility of a 
negatively concave approximation parabola. The itera­
tion is terminated when the "characteristic quantity" 
has been reduced to less than 2 - 10RT. 

The square of the density self-consistency constraint 
is weighted by 103 and those of each of the remaining 
constraints by 102. In order for these quantities to 
be meaningful, we must specify the exact algebraic 
forms of the constraints which we employed. The 
first one we specify by the statement: the filled frac­
tion of all first neighbor sites in all basic cells is equal 
to the filled fraction of all second neighbor sites in all 
basic cells. The overlap configuration consistency 
constraints we specify as: the number of times a given 
overlap configuration occurs per molecule in one ori­
entation is equal to the number per molecule in the 
other orientation. We began the first minimization 

The calculation of fractionation factors for isotope 
exchange reactions has been of interest to chemists 

for a number of years and has had important applica­
tions in the development of isotope separation tech­
nology and in the study of geological and biological 
processes.2'3 

Since the elucidation of the fundamental theory by 
Bigeleisen and Mayer4 and by Melander,5 the calcula­
tion of these factors has been a straightforward problem 
for molecular species for which the values of the funda-

(1) Postdoctoral Fellow. 
(2) H. C. Urey, / . Chem. Soc, 562 (1947). 
(3) J. Bigeleisen, Science, 147, 463 (1965). 
(4) J. Bigeleisen and M. Mayer, J. Chem. Phys,, 15, 261 (1947). 
(5) L. Melander, "Isotope Effects on Reaction Rates," Ronald 

Press, New York, N. Y., 1960. 

(for 303 K) with the "step length" set equal to RT and 
each of the basic cell probabilities set equal to 7374th. 
Obtaining the first result required about 450 itera­
tions and 4 min. Subsequent runs employed the re­
sults obtained at a neighboring temperature as starting 
point and were initiated with the "step length" set 
at 0.25RT. They each required no more than about 
20 iterations, i.e., about the minimum number re­
quired to reduce the "step length" by eight factors of 
2. In each case the magnitudes of the errors ifi the 
self-consistency conditions were in the range 8 X 1O-4-
8 X 10-3. These errors could, of course, have been 
reduced by employing larger weighing factors, but 
only at the cost of much longer minimization runs. 

We also wish to note that the reason we were limited 
to an eight moment formulation of our frequency 
spectrum approximation technique is that the Hilbert 
matrices required for larger moment number formula­
tions are not possible to invert accurately using the 
double precision arithmetic available on the IBM 
360/65. This problem might be avoided by using a 
non-Hilbert matrix dependent formulation or by carry­
ing out the necessary inversions by means of pure integer 
or multiple precision techniques. 

mental vibration frequencies were known. However, 
until the recent development of computer programs for 
the Wilson FG matrix method of molecular vibra­
tional analysis, only a relatively few molecules could be 
treated with sufficient accuracy for the results to be of 
interest. In recent years, complete vibrational anal­
yses of an increasing variety of small organic molecules 
have been published. It therefore appeared useful to us 
to use the generalized programs developed by Schacht-
schneider and Snyder6 for the vibrational analysis 
problem and the Wolfsberg and Stern program7 for the 
calculation of isotope effects via the Bigeleisen equa-

(6) J. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta, 19, 
117(1963). 

(7) M. Wolfsberg and M. J. Stern, Pure Appl. Chem., 8, 225 (1964). 
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Abstract: The computer programs of Schachtschneider and Snyder have been used to fit force fields to published, 
observed fundamental frequencies of vibration for a series of small organic molecules and their deuterated analogs. 
These force fields have been used to calculate H/D, 12C/13C, and 12Q14C fractionation factors for specific positions 
in each molecule. The fractionation factors of H attached to carbon are affected in a regular way by variations in 
the nature of the other groups attached to the same carbon but within the accuracy of the calculations do not seem to 
be significantly affected by the nature of substituents one atom further removed. Similarly the carbon fractionation 
factors are affected by the nature of the atoms directly attached but are hardly influenced by more remote structural 
changes. The use of these factors in the interpretation of equilibrium and kinetic isotope effects is illustrated for 
several reactions. 
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